980 resultados para phosphorus fractions
Resumo:
Spatial, vertical, and seasonal variations in phosphorus fractions and in alkaline phosphatase activity (APA) were investigated in sediments in a large-shallow eutrophic Chinese lake (Lake Taihu) in 2003-2004. The phosphorus content was highest in the most seriously polluted lake area. Iron-bound phosphorus (Fe(OOH)-P) dominated (47% on average) among the phosphorus fractions determined according to Golterman (Hydrobiologia 335:87-95, 1996). Notably, organically-bound P comprised a further significant additional portion (acid-soluble + hot NaOH-extractable organic P = 25%), which was highest at the most polluted sites. The Fe(OOH)-P content was the lowest in spring (April, 2004), suggesting that degradation of organic matter led to the release of iron-bound phosphates. Sediment APA showed a significant positive relationship with both organically-bound P and Fe(OOH)-P. Consequently, organically-bound P is an important portion of the sediment phosphorus in Lake Taihu. It is mainly derived from freshly-settled autochthonous particles and from external discharges. Organically-bound P induces APA and may lead to the release of bioavailable phosphates from the organic sediments, thereby accelerating lake eutrophication.
Resumo:
Future high levels of atmospheric carbon dioxide (CO2) may increase biomass production of terrestrial plants and hence plant requirements for soil mineral nutrients to sustain a greater biomass production. Phosphorus (P), an element essential for plant growth, is found in soils both in inorganic and in organic forms. In this work, three genotypes of Populus were grown under ambient and elevated atmospheric CO2 concentrations (FACE) for 5 years. An N fertilisation treatment was added in years 4 and 5 after planting. Using a fractionation scheme, total P was sequentially extracted using H2O, NaOH, HCl and HNO3, and P determined as both molybdate (Mo) reactive and total P. Molybdate-reactive P is defined as mainly inorganic but also some labile organic P which is determined by Vanado-molybdophosphoric acid colorimetric methods. Organic P was also measured to assess all plant available and weatherable P pools. We tested the hypotheses that higher P demand due to increased growth is met by a depletion of easily weatherable soil P pools, and that increased biomass inputs increases the amount of organic P in the soil. The concentration of organic P increased under FACE, but was associated with a decrease in total soil organic matter. The greatest increase in the soil P due to elevated CO2 was found in the HCl-extractable P fraction in the non-fertilised treatment. In the NaOH-extractable fraction the Mo-reactive P increased under FACE, but total P did not differ between ambient and FACE. The increase in both the NaOH- and HCl-extractable fractions was smaller after N addition. The results showed that elevated atmospheric CO2 has a positive effect on soil P availability rather than leading to depletion.We suggest that the increase in the NaOH- and HCl-extractable fractions is biologically driven by organic matter mineralization, weathering and mycorrhizal hyphal turnover.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Inorganic phosphorus (Pi) usually controls the P availability in tropical soils, but the contribution of organic P (Po) should not be neglected, mainly in systems with low P input or management systems that promote organic matter accumulation. The aims of this study were to evaluate the changes in the Po fractions over time in soil fertilized and not fertilized with cattle manure and to correlate Po forms with available P extracted by anion exchange resin. The experiment was carried out under field conditions, in a sandy-clay loam Haplustox. The experimental design was a 2 x 9 randomized complete block factorial design, in which the first factor was manure application (20 t ha(-1)) or absence, and the second the soil sampling times (3, 7, 14, 21, 28, 49, 70, 91, and 112 days) after manure incorporation. Labile, moderately labile and non-labile Po fractions were determined in the soil material of each sampling. Manure fertilization increased the Po levels in the moderately labile and non-labile fractions and the total organic P, but did not affect the Po fraction proportions in relation to total organic P. On average, 5.1 % of total Po was in the labile, 44.4 % in the moderately labile and 50.5 % in the non-labile fractions. Available P (resin P) was more affected by the manure soluble Pi rather than by the labile Po forms. The labile and non-labile Po fractions varied randomly with no defined trend in relation to the samplings; for this reason, the data did not fit any mathematical model.
Resumo:
This data set contains measurements of phosphorus fractions (Hedley fractions) in soil collected 2007 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied. Sequentially, 20 ml NaHCO3 (adjusted to pH 8.5), 30 ml NaOH, and 35 ml HCl were used as extraction solutions for 0.5 g soil. The last step comprised the combustion (550 °C) of the remaining soil to destroy all organic material followed by shaking with 20 ml H2SO4. Organic P concentrations of the respective fractions were calculated as the difference between total dissolved P and inorganic P. Duplicate phosphate concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).
Resumo:
Experimental sediments and water from shallow, eutrophic Dianchi Lakes were treated in a controlled laboratory microcosm using different chemicals under different anoxic levels. This study revealed that the polyaluminum chloride (PAC) was able to inhibit the phosphorus release and decrease the UV254 value at any anoxic level. When the DO concentrations were between 0.76-0.95 mg(.) L-1, the UV(254)value, total phosphorus (TP), and total dissolved phosphorus (TDP) in the water column were decreased by 71.93%, 87.12% and 64.24% respectively. The UV254, TP, and TDP were also decreased by 72.94%, 70.87% and 50.76% respectively at the levels of 4.56-5.32mg(.)L(-1) of DO concentrations. The treatment effects of TP and TDP in the water column using copper sulfate however were not as efficient as the PAC treatment. The UV254 value was increased with the addition of copper sulfate at every anoxic level tested but the chlorophyll-a (Chl-a) content was decreased rapidly and efficiently by copper sulfate more than the treatment by PAC. When the DO concentrations were 0.76-0.86mg(.)L(-1) and 4.75-5.14mg(.)L(-1), the Chl-a concentrations were decreased by 84.87% and 75.07% respectively through copper sulfate treatment. With additions of PAC and copper sulfate, the phosphorus fractions in sediments were shifted forward to the favorable shapes that have little ability of release. The TP concentrations in sediments were increased after treatment via PAC and copper sulfate. Under anoxic conditions, most of the BD-P (Fe-P) to NaOH-P (Al-P) was converted using the recommended PAC dose in BD-P rich sediment. Similar to the PAC, the copper sulfate also could flocculate the exchange phosphorus from sediment to overlying water. Overall though, the effects of copper sulfate treatment were not better than that of the PAC.
Resumo:
In the absence of a suitable method for routine analysis of large numbers of natural river water samples for organic nitrogen and phosphorus fractions, a new simultaneous digestion technique was developed, based on a standard persulphate digestion procedure. This allows rapid analysis of river, lake and groundwater samples from a range of environments for total nitrogen and phosphorus. The method was evaluated using a range of organic nitrogen and phosphorus structures tested at low, mid and high range concentrations from 2 to 50 mg l-1 nitrogen and 0.2 to 10 mg l-1 phosphorus. Mean recoveries for nitrogen ranged from 94.5% (2 mg I-1) to 92.7% (50 mg I-1) and for phosphorus were 98.2% (0.2 mg l-1) to 100.2% (10 mg l-1). The method is precise in its ability m reproduce results from replicate digestions, and robust in its ability to handle a variety of natural water samples in the pH range 5-8.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This data set contains two time series of measurements of dissolved phosphorus (organic, inorganic and total with a biweekly resolution) and dissolved inorganic phosphorus with a seasonal resolution. In addition, data on phosphorus from soil samples measured in 2007 and fractionated by different acid-extrations (Hedley fractions) are provided. All data measured at the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Dissolved phosphorus in soil solution: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulatively extracted soil solution was collected every two weeks from October 2002 to May 2006. The biweekly samples from 2002, 2003 and 2004 were analyzed for dissolved organic phosphorus (DOP), dissolved inorganic phosphorus (PO4P) and dissolved total phosphorus (TDP) by Continuous Flow Analyzer (CFA SAN ++, SKALAR [Breda, The Netherlands]). 2. Seasonal values of dissolved inorganic phosphorus in soil solution were calculated as volume-weighted mean values of the biweekly measurements (spring = March to May, summer = June to August, fall = September to November, winter = December to February). 3. Phosphorus fractions in soil: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied and concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).
Resumo:
本研究在潮棕壤上进行长期施肥试验(开始于1990年),涵盖了中国颇具代表性的8种施肥模式:不施肥(CK)、单施循环猪圈肥(M)、单施氮肥(N)、氮肥+循环猪圈肥(N+M)、氮肥+磷肥(NP)、氮肥+磷肥+循环猪圈肥(NP+M)、氮肥+磷肥+钾肥(NPK)、氮肥+磷肥+钾肥+循环猪圈肥(NPK+M)。 对1990年本底和2004年耕层(0~20cm)土壤样品以及1995年、2001年和2007年耕层(0~20cm)土壤样品进行无机磷分级测定。纵观这18年施肥处理,结果表明:有效或缓效态无机磷(Ca2-P、Ca8-P、Al-P和Fe-P)在无磷肥直接投入的情况下皆有不同幅度的下降,导致土壤无机磷收支赤字,在有磷肥直接投入的情况下,这些形态的无机磷不但能满足当季作物需求还有盈余,丰富了土壤P库;而O-P和Ca10-P这两种形态的无机磷的生物有效性很低,但可由盈余的有效态无机磷缓慢转化而来,长期试验结果表明,盈余有效态无机磷会逐渐转变成无效态,肥效降低;所有的施加循环猪圈肥的处理相对于单施化肥的处理能减缓无机磷素的下降,促进磷素缓慢积累,甚至能逐步建立起小规模的P库,可见循环猪圈肥不但能发挥前期供磷作用,也有较好的后期供磷作用。 各形态无机磷与速效P(Olsen-P)之间存在很好的相关性,对土壤中各形态无机磷与速效进行通径分析及逐步回归分析,在全部引入各因子的情况下得出回归方程:Y=15.127+2.158x1+0.152x2+0.265x3+0.168x4-0.128x5-0.247x6 (R2=0.9997,F=571.78,Pr=0.032;Y、x1、x2、x3、x4、x5和x6分别代表Olsen-P、Ca2-P、Ca8-P、Al-P、Fe-P、O-P和Ca10-P的含量),这进一步明确了各因子间的关系。无机磷分级与速效含量测定相结合,可以为评价土壤供磷力提供更科学的理论依据。 循环猪圈肥(M)对土壤无机磷形态的影响与矿质磷肥截然不同,对几种有机物料(大豆秸秆粉、玉米秸秆粉、新鲜猪粪和腐熟猪粪)进行无机磷分级测定,研究发现:秸秆粉中各形态无机磷的含量甚微,而新鲜猪粪中含量较高,各种有机物料中Ca2-P、Ca8-P和Al-P的含量明显高于其它组分,新鲜猪粪与秸秆粉混合堆腐,其Ca2-P和Ca8-P含量有所下降,腐熟猪粪中有效态的无机磷组分主要来自新鲜猪粪。循环猪圈肥(M)在施入土壤初期,会提供大量的Ca2-P和Ca8-P,这两部分主要来自新鲜猪粪,并且随着土壤微生物的活动,循环猪圈肥(M)将再次缓慢释放出Ca2-P和Ca8-P,发挥后效作用;循环猪圈肥(M)在施入土壤初期还能提供相当数量的Al-P、Fe-P和O-P,但是,与Ca2-P和Ca8-P不同的是,这三种形态无机磷后期释放较少。 为进一步明确土壤无机磷形态变化除了受施肥影响之外有无其它干扰,对三种茬口(一季玉米茬、大豆茬、连作玉米茬)的无机磷分级与速效P进行相关性分析,发现,一季玉米茬、大豆茬口中二者都表现出良好的相关性,而连作玉米茬口中二者相关性弱于前两者,可以说明不同的茬口对于无机磷组分含量影响是不同的。大豆根茬分解释放出的有效态无机磷素成为翌年植物生长一个重要的速效P库。这为合理地评价土壤供磷力、指导磷肥管理提供了科学的理论依据。 本研究选择8种典型的施肥模式来模拟我国农田土壤供磷力的发展。在早期单施有机肥的条件下,循环猪圈肥(M)能释放部分磷素以供作物生长所需,随着施肥年限的增加,其在土壤中残效累积,能建立起小规模的无机P库,在农业发展中对于提高土壤供磷力极为重要;氮肥的施用,加速了作物对磷素的吸收,使得磷素输出加剧,磷素利用率提高,充分利用土壤磷素,间接地提高土壤供磷力,但是土壤P库仍是入不敷出;氮肥配施循环猪圈肥(N+M),尽管有循环猪圈肥的投入,还是很难满足作物对磷素的需求,土壤供磷力相对低下;磷肥开始施用以后,大大改善了土壤的供磷状况,每年土壤中残存的各无机磷组分有部分盈余,土壤P库逐步扩大,土壤供磷水平大大提高;钾肥的引入,农田土壤供磷水平开始出现转折,因为钾肥能促进磷素的吸收,使得磷素被大量带出农田系统,作物体内磷素含量数据也证明了这一点。
Resumo:
p.59-62
Resumo:
p.229-233