933 resultados para phosphate solubilizing bacteria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii) evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these bacteria. A total of 68 diazotrophic bacteria, leaf and root endophytic and rizoplane, of three sugarcane varieties. The selection of inorganic phosphate solubilizing diazotrophic bacteria was assayed by the solubilization index (SI) in solid medium containing insoluble phosphate. The genetic variability was analyzed by the BOX-PCR technique. The results showed that 74% of the diazotrophic strains were able to solubilize inorganic phosphate, presenting classes of different SI. The results showed that the vegetal tissue and the genotype plant influenced in the interaction between phosphate solubilizing diazotrophic bacteria and sugarcane plants. BOX-PCR revealed high genetic variability among the strains analyzed. So, sugarcane-associated diazotrophic bacteria express the capacity to solubilize inorganic phosphate and they present high genetic diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the high energy requirement and demand for non-renewable resources for the production of chemical fertilizers, added also to the environmental impact caused by the use of such products, it is important to intensify research on bio-based agricultural inputs. The use of nitrogen-fixing endophytic and phosphate solubilizing bacteria can provide these nutrients to the plants from the air and poorly soluble phosphorus sources, such as phosphate rock. The objective of this study was to evaluate the nutrition and initial growth of maize (Zea mays L.) in response to the inoculation of nitrogen-fixing and rock phosphate solubilizing endophytic bacteria, in single or mixed formulation, applied with vermicompost. The treatments containing bacteria, both diazotrophic and phosphate solubilizing, when compared to controls, showed higher levels of leaf nitrogen and phosphorus in maize, as well as higher growth characteristics. The application of vermicompost showed synergistic effect when combined with endophytic bacteria. Thus, the innovation of the combination of the studied factors may contribute to the early development of maize.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many root-colonizing pseudomonads are able to promote plant growth by increasing phosphate availability in soil through solubilization of poorly soluble rock phosphates. The major mechanism of phosphate solubilization by pseudomonads is the secretion of gluconic acid, which requires the enzyme glucose dehydrogenase and its cofactor pyrroloquinoline quinone (PQQ). The main aim of this study was to evaluate whether a PQQ biosynthetic gene is suitable to study the phylogeny of phosphate-solubilizing pseudomonads. To this end, two new primers, which specifically amplify the pqqC gene of the Pseudomonas genus, were designed. pqqC fragments were amplified and sequenced from a Pseudomonas strain collection and from a natural wheat rhizosphere population using cultivation-dependent and cultivation-independent approaches. Phylogenetic trees based on pqqC sequences were compared to trees obtained with the two concatenated housekeeping genes rpoD and gyrB. For both pqqC and rpoD-gyrB, similar main phylogenetic clusters were found. However, in the pqqC but not in the rpoD-gyrB tree, the group of fluorescent pseudomonads producing the antifungal compounds 2,4-diacetylphloroglucinol and pyoluteorin was located outside the Pseudomonas fluorescens group. pqqC sequences from isolated pseudomonads were differently distributed among the identified phylogenetic groups than pqqC sequences derived from the cultivation-independent approach. Comparing pqqC phylogeny and phosphate solubilization activity, we identified one phylogenetic group with high solubilization activity. In summary, we demonstrate that the gene pqqC is a novel molecular marker that can be used complementary to housekeeping genes for studying the diversity and evolution of plant-beneficial pseudomonads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia Agropecuária - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eighteen aerobic endospore forming strains were isolated from sugarcane rhizosphere in N-free medium. A phenotypic description and analysis of the 5' end hypervariable region sequences of 16S rRNA revealed a high diversity of Bacillus and related genera. Isolates were identified, and four genera were obtained: seven strains belonged to Bacillus (Bacillaceae family), four belonged to Paenibacillus, six belonged to Brevibacillus and one strain was identified as Cohnella (Paenibacillaceae family). Four Brevibacillus strains showed in vitro inhibitory activity against plant pathogens fungi Curvularia and Fusarium. Seventy-four percent of the isolated bacteria grew on pectin as the only carbon source, showing polygalacturonase activity. Pectate lyase activity was detected for the first time in a Brevibacillus genus strain. All isolates showed endoglucanase activity. Calcium phosphate solubilisation was positive in 83.3% of the isolates, with higher values than those reported for Bacillus inorganic phosphate solubilising strains. High ethylene plant hormone secretion in the culture medium was detected in 22% of the bacteria. This is the first report of ethylene secretion in Paenibacillaceae isolates. Indole-3-acetic acid production was found in a Brevibacillus genus isolate. It was reported for the first time the presence of Cohnella genus strain on sugarcane rhizosphere bearing plant growth promoting traits. The sugarcane isolate Brevibacillus B65 was identified as a plant growth inoculant because it showed wider spectra of plant stimulation capabilities, including an antifungal effect, extracellular hydrolases secretion, inorganic phosphate solubilisation and plant hormone liberation. In this work, sugarcane was shown to be a suitable niche for finding aerobic endospore forming 'Bacilli' with agriculture biotechnological purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forty two soil isolates (31 bacteria and 11 fungi) were studied for their ability to solubilize rock phosphate and calcium phosphate in culture medium. Eight bacteria and 8 fungi possessed solubilizing ability. Pseudomonas cepacia and Penicillium purpurogenum showed the highest activity. There was a correlation between final pH value and titratable acidity (r = - 0.29 to -0.87) and between titratable acidity and soluble phosphate (r = 0.22 to 0.99). Correlation values were functions of insoluble phosphate and of the group of microorganisms considered. A high correlation was observed between final pH and soluble phosphate only for the rock phosphates inoculated with the highest concentration of solubilizing bacteria (r = -0.73 to -0.98).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brazilian soils predominantly consist of iron and aluminum oxides and have a low phosphorus content. The present study was carried out in order to assess the status of phosphate fractions in pasture, forest and agricultural soils and the ability of soil fungi to solubilize iron and aluminum phosphates. The abundance of P fractions in the soils studied occurred in the following order: Fe-P > reductant-soluble Fe-P > occluded Fe-P > occluded Al-P > Al-P > Ca-P. of the 481 fungi isolated, 33 showed the ability to solubilize the inorganic phosphates in culture. of these, 14 were considered to be high or very high solubilizers based on a solubilization capacity > 1000 mu g PO43- ml(-1). Isolate F-111 was the only one that dissolved all the insoluble phosphates used. Nine isolates solubilized both Al-P and Ca-P, and four other isolates only solubilized Ca-P. The highest number of isolates with high solubilization capacity were detected in pasture soil, followed by tropical rain forest and forest patch soils. Pasture soil presented both the largest contents of insoluble phosphates and the largest number of fungal isolates with phosphate-solubilizing ability. The range and size of P fractions influenced the number of fungi and their ability to solubilize hardly soluble phosphates. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar o efeito de diferentes espécies de plantas, fontes de fósforo e calagem sobre a população microbiana total e solubilizadora de fosfato. Foram isolados fungos e bactérias capazes de solubilizar hidroxiapatita, proporcionando P solúvel. O experimento utilizado foi em blocos ao acaso com fatorial 3x3x2. E os fatores avaliados foram espécies de plantas (controle, braquiária e guandu), fertilizantes (controle, superfosfato simples e fosfato de rocha, ambos na dose de 400 kg ha-1 de P(2)0(5) ) e calagem (com e sem calcário). A população bacteriana cresceu pelo efeito da calagem, e a de fungos aumentou, independentemente da calagem, nas parcelas cultivadas com braquiária e fertilizadas com superfosfato. Foi constatado incremento de biomassa-P microbiana sobre o controle por influência da braquiária (23,9%), do superfosfato (30,9%) e da calagem (46,9%). O número de bactérias solubilizadoras foi favorecido pela calagem ou pelo plantio de guandu adubado com fosfato natural ou com braquiária sem adubação. Os fungos solubilizadores aumentaram na ausência de planta ou de adubação e na presença de guandu com fosfato natural. Finalmente, a calagem favoreceumais o crescimento dos fungos solubilizadores, em comparação com o controle, nos tratamentos fosfato natural, braquiária ou guandu.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A greenhouse study was conducted to determine the number of microbial populations and activities in sewage sludge and phosphate fertilizer-amended dark red latosoil for cultivation of tomato plants. Sewage sludge was applied at doses of 0, 10, 20, 40, 80 and 160 t ha(-1), and phosphate (P2O5) at doses of 0, 100, 200, 400 and 800 kg ha(-1). The bacterial populations increased as a function of sewage sludge and phosphate application. Fungal populations were not affected by the application of phosphate alone but were increased by the application of sewage sludge. Phosphate doses higher than 100-200 kg ha(-1) in combination with sewage sludge inhibited both bacterial and fungal growth. The responses determined by microbial counts were reflected in the microbial biomass values, with a more significant effect of sewage sludge than of phosphate or of a combination of both. These results confirm the need for a carbon and energy source (represented here by sewage sludge) for microbial growth in a soil poor in organic matter. Dehydrogenase and urease activities reflected the results of the microbial populations due to the effect of sewage sludge and phosphate, but no satisfactory result was obtained for phosphatase. Urease activity was expressed by a linear regression equation as the result of the effect of sewage sludge, and by a quadratic regression equation as the result of the effect of phosphate. All parameters investigated showed a significant correlation with bacterial counts but not with fungal counts, indicating a greater effect of sewage sludge and phosphate on bacteria than on fungi.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Co-inoculation of the fungus Aspergillus niger and the bacterium Burkholderia cepacia was undertaken to understand the interaction between different species of phosphate-solubilizing microorganisms (PSM). PSM were inoculated in a single or mixed (A. nigerB.similar to cepacia) culture. During 9 similar to days of incubation, microbial biomass was enhanced, accompanied with increases in the levels of soluble phosphate and titratable acidity, as well as increased acid phosphatase activity. Production of acids and levels of phosphate solubilization were greater in the co-culture of A.similar to nigerB.similar to cepacia than in the single culture. The quantity of phosphate solubilized by the co-culture ranged from 40.51 +/- 0.60 to 1103.64 +/- 1.21 similar to mu g similar to PO4 3-similar to mL-1 and was 922% higher than single cultures. pH of the medium dropped from 7.0 to 3.0 in the A.similar to niger culture, 3.1 in the co-culture, and 4.2 in the B.similar to cepacia culture. on the third day of postinoculation, acid production by the co-culture (mean 5.40 +/- 0.31 similar to mg NaOH mL-1) was 1990% greater than single cultures. Glucose concentration decreased almost completely (9799% of the starting concentration) by the ninth day of the incubation. These results show remarkable synergism by the co-culture in comparison with single cultures in the solubility of CaHPO4 under in vitro conditions. This synergy between microorganisms can be used in poor available phosphate soils to enhance phosphate solubilization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant Growth Promoting Rhizobacteria (PGPR) has been used as a biofertilizer, bringing benefits to agriculture as Phosphorus Solubilizing Bacteria (PSB), indole-acetic acid (IAA) producers, and with other activites. The goal of this report was the identification of PGPR from soils under sugarcane crops by 16S rRNA sequencing, and the evaluation of the ability of phosphorus solubilizing and IAA production by biological assays. The isolates of this work were obtained from three areas of sugarcane crop from São Paulo State, Brazil. All isolates came from rhizosphere soil, and in a total of 60 isolates just 10 have showed high ability in phosphorus solubilizing. The selection of PSB may be done by phenotypic and/or genotypic characterization. Among ten isolates Enterobacter sp. (FJ890899), Entrobacter homaechei subsp. verschuerennii (FJ890998), Burkholderia sp. (FJ890895), and Labrys portucalensis (FJ890891) were able to IAA production. © 2006-2012 Asian Research Publishing Network (ARPN).