174 resultados para phenylpropanoid glycoside
Resumo:
首次从野桂花(Osmanthus yunnanensis Fr. P. S. Green)地上部分95%乙醇提取物中通过色谱分离得到20个化合物, 其中化合物20为新化合物。基于波谱数据它们被鉴定为(E)-阿魏酸二十烷基酯(1)、β-谷甾醇(2)、羽扇豆醇(3)、齐墩果酸(4)、7-oxo-β-sitosterol(5)、乙酰齐墩果酸(6)、(6′-O-palmitoyl)-sitosterol 3-O-β-D-glucoside(7)、rotundioic acid(8)、地榆糖甙Ⅱ(9)、27-O-(E)-对羟基肉桂酰-28-齐墩果酸(10)、27-O-(Z)-对羟基肉桂酰-28-齐墩果酸(11)、hycandinic acid ester(12)、绿原酸丁酯(13)、4,5-二咖啡酰奎尼酸丁酯(14)、4,5-dihydroxyprenyl caffeate(15)、28-O-β-D-glucopyranosyl rotundioic acid (16)、4-(6-O-caffeoyl-β-D-glucopyranosyloxy)-5-hydroxyprenyl caffeate (aohada-glycoside C, 17)、 4-β-D-glucopyranosyloxy-5-hydroxy-prenyl caffeate (aohada-glycoside A, 18)、β-胡萝卜甙(19)以及3-[O-β-D-(6-O-咖啡酰吡喃葡萄糖)]-甲基-2-烯-γ-内酯 (20)。化合物13、14、15和17有较强的α-葡萄糖甙酶抑制活性。当浓度为1 mg/ml时,它们对α-葡萄糖甙酶的抑制分别为61.5%、95.5%、72.1%、62.6%,活性高于阿卡波糖。 综述了木犀属植物化学成分及1993年以来苯丙素甙类化合物活性研究进展。 Twenty compounds were isolated from the 95% ethanol extract of the aerial parts of Osmanthus yunnanensis Fr. P. S. Green by chromatography for the first time. On the basis of spectral data, they were identified as (E)-ferulic acid eicosyl ester (1), β-sitosterol (2), lupenol (3), oleanolic acid (4), 7-oxo-β-sitosterol (5), acetyloleanolic acid (6), (6′-O-palmitoyl)-sitosterol 3-O-β-D-glucoside (7), rotundioic acid (8), ziyu glycosideⅡ (9), 3β-hydroxy-27-p-(E)-coumaroyloxy-olean-12-en-28-oic acid (10), 3β-hydroxy-27-p-(Z)-coumaroyloxyolean-12-en-28-oic acid (11), hycandinic acid ester (12), chlorogenic acid butyl ester (13), 4,5-di-O-caffeoylquinic acid butyl ester (14), 4,5-dihydroxyprenyl caffeate (15), 28-O-β-D-glucopyranosyl rotundioic acid (16), 4-(6-O-caffeoyl-β-D-glucopyranosyloxy)-5-hydroxyprenyl caffeate (aohada- glycoside C, 17), 4-β-D-glucopyranosyloxy-5-hydroxyprenyl caffeate (aohada- glycoside A, 18), β-daucosterol(19) and 3-[O-β-D-(6-O-caffeoylglucopyranosyl)]- methyl-2-en-γ-lactone (20). Compound 20 is a new one. Compounds 13, 14, 15 and 17 inhibit α-glucosidase with corresponding inhibitory rate of 61.5%, 95.5%, 72.1% and 62.6% at a concentration of 1 mg/ml, higher than acarbose. The chemical studies on Osmanthus genus and bioactivities of phenylpropanoid glycosides were summarized.
Resumo:
Secondary metabolites play an important role in plant protection against biotic and abiotic stress. In Populus, phenolic glycosides (PGs) and condensed tannins (CTs) are two such groups of compounds derived from the common phenylpropanoid pathway. The basal levels and the inducibility of PGs and CTs depend on genetic as well as environmental factors, such as soil nitrogen (N) level. Carbohydrate allocation, transport and sink strength also affect PG and CT levels. A negative correlation between the levels of PGs and CTs was observed in several studies. However, the molecular mechanism underlying such relation is not known. We used a cell culture system to understand negative correlation of PGs and CTs. Under normal culture conditions, neither salicin nor higher-order PGs accumulated in cell cultures. Several factors, such as hormones, light, organelles and precursors were discussed in the context of aspen suspension cells’ inability to synthesize PGs. Salicin and its isomer, isosalicin, were detected in cell cultures fed with salicyl alcohol, salicylaldehyde and helicin. At higher levels (5 mM) of salicyl alcohol feeding, accumulation of salicins led to reduced CT production in the cells. Based on metabolic and gene expression data, the CT reduction in salicin-accumulating cells is partly a result of regulatory changes at the transcriptional level affecting carbon partitioning between growth processes, and phenylpropanoid CT biosynthesis. Based on molecular studies, the glycosyltransferases, GT1-2 and GT1-246, may function in glycosylation of simple phenolics, such as salicyl alcohol in cell cultures. The uptake of such glycosides into vacuole may be mediated to some extent by tonoplast localized multidrug-resistance associated protein transporters, PtMRP1 and PtMRP6. In Populus, sucrose is the common transported carbohydrate and its transport is possibly regulated by sucrose transporters (SUTs). SUTs are also capable of transporting simple PGs, such as salicin. Therefore, we characterized the SUT gene family in Populus and investigated, by transgenic analysis, the possible role of the most abundantly expressed member, PtSUT4, in PG-CT homeostasis using plants grown under varying nitrogen regimes. PtSUT4 transgenic plants were phenotypically similar to the wildtype plants except that the leaf area-to-stem volume ratio was higher for transgenic plants. In SUT4 transgenics, levels of non-structural carbohydrates, such as sucrose and starch, were altered in mature leaves. The levels of PGs and CTs were lower in green tissues of transgenic plants under N-replete, but were higher under N-depleted conditions, compared to the levels in wildtype plants. Based on our results, SUT4 partly regulates N-level dependent PG-CT homeostasis by differential carbohydrate allocation.
Resumo:
Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.
Resumo:
Mammalian heparanase is an endo-β-glucuronidase associated with cell invasion in cancer metastasis, angiogenesis and inflammation. Heparanase cleaves heparan sulfate proteoglycans in the extracellular matrix and basement membrane, releasing heparin/heparan sulfate oligosaccharides of appreciable size. This in turn causes the release of growth factors, which accelerate tumor growth and metastasis. Heparanase has two glycosaminoglycan-binding domains; however, no three-dimensional structure information is available for human heparanase that can provide insights into how the two domains interact to degrade heparin fragments. We have constructed a new homology model of heparanase that takes into account the most recent structural and bioinformatics data available. Heparin analogs and glycosaminoglycan mimetics were computationally docked into the active site with energetically stable ring conformations and their interaction energies were compared. The resulting docked structures were used to propose a model for substrates and conformer selectivity based on the dimensions of the active site. The docking of substrates and inhibitors indicates the existence of a large binding site extending at least two saccharide units beyond the cleavage site (toward the nonreducing end) and at least three saccharides toward the reducing end (toward heparin-binding site 2). The docking of substrates suggests that heparanase recognizes the N-sulfated and O-sulfated glucosamines at subsite +1 and glucuronic acid at the cleavage site, whereas in the absence of 6-O-sulfation in glucosamine, glucuronic acid is docked at subsite +2. These findings will help us to focus on the rational design of heparanase-inhibiting molecules for anticancer drug development by targeting the two heparin/heparan sulfate recognition domains.
Resumo:
Coccinia indica agglutinin (CIA) is a chitooligosaccharide-specific lectin with two binding sites/homodimer of M(r) 32,000. Quenching studies implied tryptophan involvement in binding activity, which was confirmed by chemical modification experiments (A. R. Sanadi and A. Surolia, submitted for publication). Binding of 4-methylumbelliferyl chitooligosaccharides has been carried out to study their binding by CIA. Reversal experiments confirm the validity of the data previously obtained (A. R. Sanadi and A. Surolia, submitted for publication) from intrinsic fluorescence studies. Surprisingly, unlike wheat germ agglutinin, there is no consistent thermodynamic effect of the chromophoric label on binding activities as compared with the native sugars. From the changes in the optical properties of the chromophoric group upon binding to CIA, it has been possible to confirm that the tryptophan located in the binding site is closest to the fourth subsite. Thermodynamic analysis shows that the binding of the labeled tetrasaccharide is very strongly entropically driven, with the terminal, nonreducing sugar residue protruding from the binding pocket. The results of stopped-flow kinetic studies on the binding of the chromophoric trisaccharide by CIA show that the mechanism of binding is a one-step process.
Resumo:
Two dinuclear copper(II) complexes Li(H2O)(3)(CH3OH)](4)Cu2Br4]Cu-2(cpdp)(mu-O2CCH3)](4)(OH)(2) (1), Cu (H2O)(4)]Cu-2(cpdp)(mu-O2CC6H5)](2)Cl-2 center dot 5H(2)O (2), and a dinuclear zinc(II) complex Zn-2(cpdp)(mu-O2CCH3)] (3) have been synthesized using pyridine and benzoate functionality based new symmetrical dinucleating ligand, N, N'-Bis2-carboxybenzomethyl]-N, N'-Bis2-pyridylmethyl]-1,3-diaminopropan-2-ol (H(3)cpdp). Complexes 1, 2 and 3 have been synthesized by carrying out reaction of the ligand H3cpdp with stoichiometric amounts of Cu-2(O2CCH3)(4)(H2O)(2)], CuCl2 center dot 2H(2)O/C6H5COONa, and Zn(CH3COO)(2)center dot 2H(2)O, respectively, in methanol in the presence of NaOH at ambient temperature. Characterizations of the complexes have been done using various analytical techniques including single crystal X-ray structure determination. The X-ray crystal structure analyses reveal that the copper(II) ions in complexes 1 and 2 are in a distorted square pyramidal geometry with Cu-Cu separation of 3.455(8) angstrom and 3.492(1)angstrom, respectively. The DFT optimized structure of complex 3 indicates that two zinc(II) ions are in a distorted square pyramidal geometry with Zn-Zn separation of 3.492(8)angstrom. UV-Vis and mass spectrometric analyses of the complexes confirm their dimeric nature in solution. Furthermore, H-1 and C-13 NMR spectroscopic investigations authenticate the integrity of complex 3 in solution. Variable-temperature (2-300 K) magnetic susceptibility measurements show the presence of antiferromagnetic interactions between the copper centers, with J = -26.0 cm(-1) and -23.9 cm(-1) ((H) over cap = -2JS(1)S(2)) in complexes 1 and 2, respectively. In addition, glycosidase-like activity of the complexes has been investigated in aqueous solution at pH similar to 10.5 by UV-Vis spectrophotometric technique using p-nitrophenyl-alpha-D-glucopyranoside (4) and p-nitrophenyl-beta-D-glucopyranoside (5) as model substrates. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
本论文由三章组成。第一章阐述了藏药水菖蒲的化学成分研究,共分离鉴定了39个化学成分,其中6个为新化合物。第二章报道了几种忍冬属植物的HPLC、HPLC-MS、GC分析以及抑菌活性、重金属含量测定结果。第三章概述了菖蒲属植物的研究进展。 第一章报道了水菖蒲(Acorus calamus L.)化学成分的分离纯化与结构鉴定。采用正、反相硅胶柱层析等分离方法,从水菖蒲的根中共分离出41个化合物,通过红外、质谱、核磁共振及X-ray单晶衍射等波谱方法和模拟计算方法鉴定了其中39个化合物的结构,主要为倍半萜、苯丙素、甾体类化合物。其中含有5个新的倍半萜类化合物和1系列新的甾体皂苷衍生物。经波谱分析将它们的结构鉴定为 1b, 7a(H)-cadinane-4a, 6a, 10a-triol (1), (2R,6R,7S,9S)-1(10), 4-cadinadiene-2, 9-diol (2), 1a, 5b-guaiane-10a-O-ethyl-4b, 6b-diol (7), 6b, 7b(H)-cadinane-1a, 4a, 10a-triol (13),(1R,4R,6S,10R)-1-hydroxy-7(11)-cadinen-5, 8-dione (14), 4′-O-正n碳酰基-3-O- β-D-葡萄糖基谷甾醇(n=14, 16, 18, 22) (15)。 第二章包括四个部分。第一部分报道了忍冬属三种植物40个样品的HPLC测定和对主要活性成分绿原酸的定量分析结果,以及运用HPLC-MS技术对色谱图中8个峰进行指认。在此基础上,考察了种植和采收多个因素对绿原酸含量的影响。第二部分报道了忍冬属三种植物27个样品的GC分析,根据样品的挥发性成分的保留时间对不同样品进行了定性比较,并考察了花期及海拔高度对植物挥发性成分的影响。第三、四部分分别阐述了灰毡毛忍冬和红腺忍冬的体外抑菌活性研究和重金属含量测定结果。 第三章全面系统地概述了菖蒲属植物的化学成分和药理活性研究进展。 This dissertation is composed by three chapters. The first chapter elaborates the phytochemical investigation of Acorus calamus L. Thirty-nine compounds including six new compounds were isolated and identified. The second chapter reports the research on genus Lonicera by HPLC, HPLC-MS and GC. Antifungal activity and heavy metals measurement of genus Lonicera were reported. The third chapter is a review about the research progress on the plant family of Acorus. The first chapter focuses on the isolation and identification of chemical constituents from Acorus calamus L.. Forty-one compounds were isolated from the root of Acorus calamus L. by repeat column chromatography over normal and reversed phase silica gel, the structure of thirty-nine compounds was identified by spectroscopic methods and computational methods, including IR, MS, NMR and X-ray. Those compounds mainly belonged to sesquiterpene, phenylpropanoid and steroid. Among them, five are new sesquiterpenes and one series are new steroid glycoside derivatives. Their structure were suggested as 1b, 7a(H)-cadinane-4a, 6a, 10a-triol (1), (2R,6R,7S,9S)-1(10), 4-cadinadiene-2, 9-diol (2), 1a, 5b-guaiane-10a-O-ethyl-4b, 6b- diol (7), 6b, 7b(H)-cadinane-1a, 4a, 10a-triol (13), (1R,4R,6S,10R)-1-hydroxy-7(11)- cadinen-5, 8-dione (14), 4′-O-carbonyl-3-O-β-D-glucosyl-sitosterol (carbonyl = tetradecanoyl, hexadecanoyl, octadecyl, docosanoyl) (15). The second chapter consists of four parts. The first part reports the HPLC analysis of forty samples of the genus Lonicera, and the quantitative investigation of chlorogenic acid in these samples by HPLC analysis. Relationship between the content of chlorogenic acid in different samples and their planting conditions and harvesting time were discussed. Furthermore, eight compounds were identified or tentatively characterized based on their mass spectra and UV spectra profiles. The second part is about qualitative analysis of the volatile constituent in twenty-seven samples of genus Lonicera by GC. The effect of planting altitude and harvesting time on the volatile constituent was also investigated. The third and fourth parts describe the antifungal activity and content of some kinds of heavy metals of L. macranthoides Hand.-Mazz. and L. hypoglauca Miq.. The third chaspter is a review about the research progress of the plant family of Acorus.
Resumo:
A novel prenylflavonol glycoside, named acetylicariin, has been isolated from the aerial parts of Epimedium koreanum Nakai. The structure has been identified by electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) and other chemical evidence, which has been elucidated as 8-prenylkaempferol-4'-methoxyl-3-O-alpha-L-rhamnopyranosyl-7-O-beta-D-(2''-O-acetyl)glucopyranoside.
Resumo:
The tandem ene/intramolecular Sakurai cyclisation (IMSC) reaction has been successfully applied to thesynthesis of a range of C-glycosides, with key intermediates offering opportunities for functionalisation ofthe glycon moiety. To demonstrate the versatility of the approach to access the 2-deoxy-C-glycoside series,we synthesised diastereomerically pure C-glucoside and galactoside derivatives incorporating functionalisedaromatic, heteroaromatic and bicyclic aromatic moieties, in addition to the C-homologue of(±)-b-2-deoxy-glucose 6-phosphate.
Resumo:
The utility of the nitroaldol reaction for accessing 3-nitro-pyranoside, 3-nitro-septanoside or 4-nitro-septanoside derivatives, by reaction of the anion of nitromethane with glycoside dialdehydes is demonstrated. Initially, the feasibility of using unprotected glucoside dialdehydes was probed for the synthesis of the septanoside products, but this affoided pyranoside rather than septanoside targets. Subsequent studies utilised protected glycoside dialdehydes within the methodology, which allowed entry into a range of 3-nitro or 4-nitro-septanosides in good yield NMR spectroscopic analysis allowed determination of the stereochemistry of each of the products thus afforded.