950 resultados para phenyl radicals


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH3C CCH3) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH3 loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP + 2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C-4 side-chain, followed by cyclization and/or low-energy H atom beta-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph center dot)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH3 loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium) phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me3N+)C6H4 center dot + O-2] = 2.8 x 10(-11) cm(3) molecule(-1) s(-1), Phi = 4.9%; k(2)[(-O2C)C6H4 center dot + O-2] = 5.4 x 10(-1)1 cm(3) molecule(-1) s(-1), Phi = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reactions of distonic 4-(N, N, N-trimethylammonium)-2-methylphenyl and 5-(N, N, N-trimethylammonium)-2-methylphenyl radical cations (m/z 149) with O-2 are studied in the gas phase using ion-trap mass spectrometry. Photodissociation (PD) of halogenated precursors gives rise to the target distonic charge-tagged methylphenyl radical whereas collision-induced dissociation (CID) is found to produce unreactive radical ions. The PD generated distonic radicals, however, react rapidly with O-2 to form \[M + O2](center dot+) and \[M + O-2 - OH](center dot+) ions, detected at m/z 181 and m/z 164, respectively. Quantum chemical calculations using G3SX(MP3) and M06-2X theories are deployed to examine key decomposition pathways of the 5-(N, N, N-trimethylammonium)-2-methylphenylperoxyl radical and rationalise the observed product ions. The prevailing product mechanism involves a 1,5- H shift in the peroxyl radical forming a QOOH-type intermediate that subsequently eliminates (OH)-O-center dot to yield charge-tagged 2-quinone methide. Our study suggests that the analogous process should occur for the neutral methylphenyl + O-2 reaction, thus serving as a plausible source of (OH)-O-center dot radicals in combustion environments. Grants: ARC/DP0986738, ARC/DP130100862

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A radical aromatic substitution resulting in biphenylcarboxylic acid is inferred for the decomposition of benzoyl peroxide from the chemical ionization and collision-induced dissociation mass spectra. The thermolysis of benzoyl peroxide gives rise to a benzoyloxy radical, which undergoes rapid decarboxylation and hydrogen abstraction leading to phenyl radical and benzoic acid, respectively. Attack of the resulting phenyl radical on the benzoic acid results in bipbenylcarboxylic acid. On the other hand, the phenyl radical abstracts a hydrogen atom to yield benzene, which is then subjected to the attack of a benzoyloxy radical, affording phenyl benzoate. This substitution reaction rather than the recombination of benzoyloxy and phenyl radicals is found to be responsible for the formation of phenyl benzoate under the present conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study deals with the production of l-phenylflavazoles with chloro, amino, hydroxy, chloromethyl, carboxamido, trichloromethyl, N-pyrrolidyl and N-pyrrolidylmethyl groups substituted at position 3. The interconversions of 3-amino, 3-hydroxy and 3-chlorol- phenylflavazoles were also investigated. Further, an unusual phenylation reaction was found to take place if stored or air-oxidised phenylhydrazine was used as the condensing agent for the formation of flavazoles from quinoxaline-2-carboxaldehyde phenylhydrazones. By this phenylation reaction 1,3-diphenyl, l-p-tolyl-3-phenyl, l-p-chlorophenyl-3-phenyl, l-p-bromophenyl- 3-phenyl and l-phenyl-3-p-tolylflavazoles were prepared. In addition to establishing the structure of the phenylation products, the reaction was shown to take place by a free radical mechanism involving phenyl radicals formed from oxidised phenylhydrazine. Also the oxidation, reduction and bromination reactions of l-phenylflavazole were investigated. The product obtained when a mixture of l-phenylflavazole and sodium borohydride in isopropanol was heated under reflux was shown to be 2-anilinoquinoxaline-3-carboxamide which when refluxed with concentrated hydrochloric acid gave the known 2-anilinoquinoxaline. New procedures were worked out for the oxidative cyclisation reactions of quinoxaline-2carboxaldehyde phenylhydrazones to l-phenylflavazoles in excellent yields using azobenzene as a dehydrogenating agent. These cyclisations were also shown to take place, though in low Yield, if the quinoxaline2- carboxaldehyde phenylhydrazones were heated above their melting points in an atmosphere containing oxygen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Diese Arbeit beschreibt zum ersten Mal die kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche, motiviert im Hinblick auf die Nutzung der Synthesemethode für die molekulare Elektronik und verwandte Anwendungen. Durch die Verwendung der Nichtkontakt-Rasterkraftmikroskopie und der Kelvinprobe-Mikroskopie bei Raumtemperatur wurden grundlegende molekulare Prozesse der Wechselwirkungen zwischen Molekülen und der Calcit(10.4) Oberfläche sowie die chemische Reaktivität der Moleküle auf der Oberfläche analysiert. Das Zusammenspiel zwischen intermolekularen und Molekül-Oberfläche Wechselwirkungen zeigt sich für Biphenyl-4,4'-dicarbonsäure (BPDCA) durch die Koexistenz zweier unterschiedlicher molekularer Strukturen, die einen Einblick in die treibenden Kräfte der molekularen Selbstorganisation bieten. Die sehr ausgeprägte Reihenstruktur basiert auf der optimalen geometrischen Struktur der BPDCA Moleküle zu den Abmessungen des Substrats, während die zweite Struktur durch Wasserstoffbrücken zwischen den Molekülen gekennzeichnet ist. Der Deprotonierungsvorgang von 2,5-Dihydroxybenzoesäure (DHBA)-Molekülen auf Calcit wird bei Zimmertemperatur gezeigt. Zwei Phasen werden beobachtet, die nach Aufbringen der Moleküle koexistieren. Mit der Zeit geht eine bulk-ähnliche Phase in eine stabile, dicht gepackte Phase über. Der Übergang wird durch Betrachtung des Protonierungszustands der Moleküle erklärt. Die bulk-ähnliche Phase benötigt Wasserstoffbrückbindungen zur Strukturbildung. Werden die Moleküle deprotoniert, so wird die resultierende dicht gepackte Phase durch die elektrostatische Wechselwirkung der deprotonierten Carboxylatgruppen mit den Oberflächen-Calciumkationen stabilisiert. 4-Iodbenzoesäure (IBA)-Moleküle bilden auf Calcit nur Inseln an Stufenkanten, was auf die schwache Molekül-Oberflächen-Wechselwirkung zurückzuführen ist. Für einen stärkeren Einfluss des Substrats durchlaufen die Moleküle einen kontrollierten Übergangsschritt vom protonierten zum deprotonierten Zustand. Im deprotonierten Zustand nehmen die Moleküle eine wohldefinierte Adsorptionsposition auf dem Substrat ein. Die deprotonierte Säuregruppe wird ausgenutzt, um die Desorption der halogensubstituierten Benzoesäure-Moleküle bei der thermischer Aktivierung für die Vernetzungsreaktion zu vermeiden. Darüber hinaus wird die Carboxylatgruppe als starker Elektronendonor verwendet um die Phenyl-Halogen-Bindung zu schwächen und somit die homolytische Spaltung dieser Bindung auch bei moderaten Temperaturen zu ermöglichen. Diesem Konzept folgend ist die erste erfolgreiche kovalente Verknüpfung von 2,5-Diiod-benzoesäure, 2,5-Dichlorbenzoesäure, 3,5-Diiod Salicylsäure und 4-Iod-benzoesäure zu durchkonjugierten molekularen Drähten, Zick-Zack-Strukturen sowie Dimere gezeigt durch Ausnutzen von unterschiedlichen Substitutionsposition sowie Ändern der Anzahl der substituierten Halogenatome. Aufbauend auf diesem Erfolg, wird eine zweistufige Vernetzungsreaktion vorgestellt. Zum Induzieren der ortsspezifischen und sequentiellen kovalenten Verknüpfung wird ein Ausgangsmolekül gewählt, das sowohl eine Bromphenyl als auch eine Chlorphenyl Gruppe mit unterschiedlichen Dissoziationsenergien für die homolytische Spaltung besitzt. Die Reaktionsstellen und sequentielle Reihenfolge für die Reaktion sind somit in der molekularen Struktur einkodiert und bisher unerreichte Reaktionspfade können mithilfe der kovalente Verknüpfung organischer Moleküle auf einer Isolatoroberfläche beschritten werden.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen dioxide is used as a "radical scavenger" to probe the position of carbon-centered radicals within complex radical ions in the gas phase. As with analogous neutral radical reactions, this addition results in formation of an \[M + NO2](+) adduct, but the structural identity of this species remains ambiguous. Specifically, the question remains: do such adducts have a nitro-(RNO2) or nitrosoxy-(RONO) moiety, or are both isomers present in the adduct population? In order to elucidate the products of such reactions, we have prepared and isolated three distonic phenyl radical cations and observed their reactions with nitrogen dioxide in the gas phase by ion-trap mass spectrometry. In each case, stabilized \[M + NO2](+) adduct ions are observed and isolated. The structure of these adducts is probed by collision-induced dissociation and ultraviolet photodissociation action spectroscopy and a comparison made to the analogous spectra of authentic nitro-and nitrosoxy-benzenes. We demonstrate unequivocally that for the phenyl radical cations studied here, all stabilized \[M + NO2](+) adducts are exclusively nitrobenzenes. Electronic structure calculations support these mass spectrometric observations and suggest that, under low-pressure conditions, the nitrosoxy-isomer is unlikely to be isolated from the reaction of an alkyl or aryl radical with NO2. The combined experimental and theoretical results lead to the prediction that stabilization of the nitrosoxy-isomer will only be possible for systems wherein the energy required for dissociation of the RO-NO bond (or other low energy fragmentation channels) rises close to, or above, the energy of the separated reactants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of the aromatic distonic peroxyl radical cations N-methyl pyridinium-4-peroxyl (PyrOO center dot+) and 4-(N,N,N-trimethyl ammonium)-phenyl peroxyl (AnOO center dot+), with symmetrical dialkyl alkynes 10?ac was studied in the gas phase by mass spectrometry. PyrOO center dot+ and AnOO center dot+ were produced through reaction of the respective distonic aryl radical cations Pyr center dot+ and An center dot+ with oxygen, O2. For the reaction of Pyr center dot+ with O2 an absolute rate coefficient of k1=7.1X10-12 cm3 molecule-1 s-1 and a collision efficiency of 1.2?% was determined at 298 K. The strongly electrophilic PyrOO center dot+ reacts with 3-hexyne and 4-octyne with absolute rate coefficients of khexyne=1.5X10-10 cm3 molecule-1 s-1 and koctyne=2.8X10-10 cm3 molecule-1 s-1, respectively, at 298 K. The reaction of both PyrOO center dot+ and AnOO center dot+ proceeds by radical addition to the alkyne, whereas propargylic hydrogen abstraction was observed as a very minor pathway only in the reactions involving PyrOO center dot+. A major reaction pathway of the vinyl radicals 11 formed upon PyrOO center dot+ addition to the alkynes involves gamma-fragmentation of the peroxy O?O bond and formation of PyrO center dot+. The PyrO center dot+ is rapidly trapped by intermolecular hydrogen abstraction, presumably from a propargylic methylene group in the alkyne. The reaction of the less electrophilic AnOO center dot+ with alkynes is considerably slower and resulted in formation of AnO center dot+ as the only charged product. These findings suggest that electrophilic aromatic peroxyl radicals act as oxygen atom donors, which can be used to generate alpha-oxo carbenes 13 (or isomeric species) from alkynes in a single step. Besides gamma-fragmentation, a number of competing unimolecular dissociative reactions also occur in vinyl radicals 11. The potential energy diagrams of these reactions were explored with density functional theory and ab initio methods, which enabled identification of the chemical structures of the most important products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis and characterisation of new examples of meso-hydroxynickel(II) porphyrins with 5,15-diphenyl and 10-phenyl-5,15-diphenyl/diaryl substitu- tion. The OH group was introduced by using carbonate or hydroxide as nucleophile by using palladium/phosphine cat- alysis. The NiPor OHs exist in solution in equilibrium with the corresponding oxy radicals NiPor OC. The 15-phenyl group stabilises the radicals, so that the 1H NMR spectra of {NiPor OH} are extremely broad due to chemical exchange with the paramagnetic species. The radical concentration for the diphenylporphyrin analogue is only 1%, and its NMR line-broadening was able to be studied by variable-tempera- ture NMR spectroscopy. The EPR signals of NiPor OC are con- sistent with somewhat delocalised porphyrinyloxy radicals, and the spin distributions calculated by using density func- tional theory match the EPR and NMR spectroscopic obser- vations. Nickel(II) meso-hydroxy-10,20-diphenylporphyrin was oxidatively coupled to a dioxo-terminated porphodimethene dyad, the strongly red-shifted electronic spectrum of which was successfully modelled by using time-dependent DFT calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artículo científico Inorg. Chem. 2013, 52, 8074−8081

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mononuclear tri-spin single-molecule magnet based on the rare earth radical [Tb(hfac)(3)(NITPhOEt)(2)] (NITPhOEt = 4'-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized, structurally characterized and the alternating current signals show a slow relaxation of magnetization and frequency-dependent signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new convenient method is reported for the synthesis of the phenyl-capped pentamer and hexamer of aniline. The method was accomplished by the reaction of the parent aniline tetramer in the pernigraniline oxidation state with diphenylamine and N-phenyl-1,4-phenylenediamine in the leucoemeraldine oxidation state, respectively. The mechanism probably involves the formation of cation radicals and their coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis: Patients with type 1 diabetes mellitus are more susceptible than healthy individuals to exercise-induced oxidative stress and vascular endothelial dysfunction, which has important implications for the progression of disease. Thus, in the present study, we designed a randomised double-blind, placebo-controlled trial to test the original hypothesis that oral prophylaxis with vitamin C attenuates rest and exercise-induced free radical-mediated lipid peroxidation in type 1 diabetes mellitus. Methods: All data were collected from hospitalised diabetic patients. The electron paramagnetic resonance spectroscopic detection of spin-trapped a-phenyl-tert-butylnitrone (PBN) adducts was combined with the use of supporting markers of lipid peroxidation and non-enzymatic antioxidants to assess exercise-induced oxidative stress in male patients with type 1 diabetes (HbA1c 7.9±1%, n=12) and healthy controls (HbA1c 4.6±0.5%, n=14). Following participant randomisation using numbers in a sealed envelope, venous blood samples were obtained at rest, after a maximal exercise challenge and before and 2 h after oral ingestion of 1 g ascorbate or placebo. Participants and lead investigators were blinded to the administration of either placebo or ascorbate treatments. Primary outcome was the difference in changes in free radicals following ascorbate ingestion. Resuts: Six diabetic patients and seven healthy control participants were randomised to each of the placebo and ascorbate groups. Diabetic patients (n=12) exhibited an elevated concentration of PBN adducts (p<0.05 vs healthy, n=14), which were confirmed as secondary, lipid-derived oxygen-centred alkoxyl (RO•) radicals (a nitrogen=1.37 mT and aßhydrogen=0.18 mT). Lipid hydroperoxides were also selectively elevated and associated with a depression of retinol and lycopene (p<0.05 vs healthy). Vitamin C supplementation increased plasma vitamin C concentration to a similar degree in both groups (p<0.05 vs pre-supplementation) and attenuated the exercise-induced oxidative stress response (p<0.05 vs healthy). There were no selective treatment differences between groups in the primary outcome variable. Conclusions/ interpretation: These findings are the first to suggest that oral vitamin C supplementation provides an effective prophylaxis against exercise-induced free radical-mediated lipid peroxidation in human diabetic blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

5-(4-(N-tert-Butyl-N-aminoxylphenyl)) pyrimidine (RL, 4PPN) forms crystallographically isostructural and isomorphic pseudo-octahedral M(RL)(2)(hfac)(2) complexes with M(hfac)(2), M = Zn, Cu, Ni, Co, and Mn. Multiple close contacts occur between sites of significant spin density of the organic radical units. Magnetic behavior of the Zn, Cu, Ni, Co complexes appears to involve multiple exchange pathways, with multiple close crystallographic contacts between sites that EPR (of 4PPN) indicates to have observable spin density. Powder EPR spectra at room temperature and low temperature are reported for each complex. Near room temperature, the magnetic moments of the complexes are roughly equal to those expected by a sum of non-interacting moments (two radicals plus ion). As temperature decreases, AFM exchange interactions become evident in all of the complexes. The closest fits to the magnetic data were found for a 1-D Heisenberg AFM chain model in the Zn(II) complex (J/k = (-)7 K), and for three-spin RL-M-RL exchange in the other complexes (J/k = (-)26 K, (-)3 K, (-) 6 K, for Cu(II), Ni(II), and Co(II) complexes, respectively). (C) 2008 Elsevier B.V. All rights reserved.