998 resultados para phantom energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The accretion of a phantom fluid with non-zero chemical potential by black holes is discussed with basis on the generalized second law of thermodynamics. For phantom fluids with positive temperature and negative chemical potential we demonstrate that the accretion process is possible, and that the condition guaranteeing the positiveness of the phantom fluid entropy coincides with the one required by the generalized second law. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this report we will investigate the effect of negative energy density in a classic Friedmann cosmology. Although never measured and possibly unphysical, the evolution of a Universe containing a significant cosmological abundance of any of a number of hypothetical stable negative energy components is explored. These negative energy (Ω < 0) forms include negative phantom energy (w<-1), negative cosmological constant (w=-1), negative domain walls (w=-2/3), negative cosmic strings (w= -1/3), negative mass (w=0), negative radiation (w=1/3), and negative ultra-light (w > 1/3). Assuming that such universe components generate pressures as perfect fluids, the attractive or repulsive nature of each negative energy component is reviewed. The Friedmann equations can only be balanced when negative energies are coupled to a greater magnitude of positive energy or positive curvature, and minimal cases of both of these are reviewed. The future and fate of such universes in terms of curvature, temperature, acceleration, and energy density are reviewed including endings categorized as a Big Crunch, Big Void, or Big Rip and further qualified as "Warped", "Curved", or "Flat", "Hot" versus "Cold", "Accelerating" versus" Decelerating" versus "Coasting". A universe that ends by contracting to zero energy density is termed a Big Poof. Which contracting universes ``bounce" in expansion and which expanding universes ``turnover" into contraction are also reviewed. The name by which the ending of the Universe is mentioned is our own nomenclature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recent observational advances of Astronomy and a more consistent theoretical framework turned Cosmology in one of the most exciting frontiers of contemporary science. In this thesis, homogeneous and inhomogeneous Universe models containing dark matter and different kinds of dark energy are confronted with recent observational data. Initially, we analyze constraints from the existence of old high redshift objects, Supernovas type Ia and the gas mass fraction of galaxy clusters for 2 distinct classes of homogeneous and isotropic models: decaying vacuum and X(z)CDM cosmologies. By considering the quasar APM 08279+5255 at z = 3.91 with age between 2-3 Gyr, we obtain 0,2 < OM < 0,4 while for the j3 parameter which quantifies the contribution of A( t) is restricted to the intervalO, 07 < j3 < 0,32 thereby implying that the minimal age of the Universe amounts to 13.4 Gyr. A lower limit to the quasar formation redshift (zJ > 5,11) was also obtained. Our analyzes including flat, closed and hyperbolic models show that there is no an age crisis for this kind of decaying A( t) scenario. Tests from SN e Ia and gas mass fraction data were realized for flat X(z)CDM models. For an equation of state, úJ(z) = úJo + úJIZ, the best fit is úJo = -1,25, úJl = 1,3 and OM = 0,26, whereas for models with úJ(z) = úJo+úJlz/(l+z), we obtainúJo = -1,4, úJl = 2,57 and OM = 0,26. In another line of development, we have discussed the influence of the observed inhomogeneities by considering the Zeldovich-Kantowski-DyerRoeder (ZKDR) angular diameter distance. By applying the statistical X2 method to a sample of angular diameter for compact radio sources, the best fit to the cosmological parameters for XCDM models are OM = O, 26,úJ = -1,03 and a = 0,9, where úJ and a are the equation of state and the smoothness parameters, respectively. Such results are compatible with a phantom energy component (úJ < -1). The possible bidimensional spaces associated to the plane (a , OM) were restricted by using data from SNe Ia and gas mass fraction of galaxy clusters. For Supernovas the parameters are restricted to the interval 0,32 < OM < 0,5(20") and 0,32 < a < 1,0(20"), while to the gas mass fraction we find 0,18 < OM < 0,32(20") with alI alIowed values of a. For a joint analysis involving Supernovas and gas mass fraction data we obtained 0,18 < OM < 0,38(20"). In general grounds, the present study suggests that the influence of the cosmological inhomogeneities in the matter distribution need to be considered with more detail in the analyses of the observational tests. Further, the analytical treatment based on the ZKDR distance may give non-negligible corrections to the so-calIed background tests of FRW type cosmologies

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the Randall-Sundrum brane-world model with bulk-brane energy transfer where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. It is remarkable that these curvature terms will not change the dynamics of the brane universe at low energy. Parameterizing the energy transfer and taking the dark radiation term into account, we find that the phantom divide of the equation of state of effective dark energy could be crossed, without the need of any new dark energy components. Fitting the two most reliable and robust SNIa datasets, the 182 Gold dataset and the Supernova Legacy Survey (SNLS), our model indeed has a small tendency of phantom divide crossing for the Gold dataset, but not for the SNLS dataset. Furthermore, combining the recent detection of the SDSS baryon acoustic oscillations peak (BAO) with lower matter density parameter prior, we find that the SNLS dataset also mildly favors phantom divide crossing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To analyze the detection of endoleaks with low-tube-voltage computed tomographic (CT) angiography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE The aim of this study was to directly compare metal artifact reduction (MAR) of virtual monoenergetic extrapolations (VMEs) from dual-energy computed tomography (CT) with iterative MAR (iMAR) from single energy in pelvic CT with hip prostheses. MATERIALS AND METHODS A human pelvis phantom with unilateral or bilateral metal inserts of different material (steel and titanium) was scanned with third-generation dual-source CT using single (120 kVp) and dual-energy (100/150 kVp) at similar radiation dose (CT dose index, 7.15 mGy). Three image series for each phantom configuration were reconstructed: uncorrected, VME, and iMAR. Two independent, blinded radiologists assessed image quality quantitatively (noise and attenuation) and subjectively (5-point Likert scale). Intraclass correlation coefficients (ICCs) and Cohen κ were calculated to evaluate interreader agreements. Repeated measures analysis of variance and Friedman test were used to compare quantitative and qualitative image quality. Post hoc testing was performed using a corrected (Bonferroni) P < 0.017. RESULTS Agreements between readers were high for noise (all, ICC ≥ 0.975) and attenuation (all, ICC ≥ 0.986); agreements for qualitative assessment were good to perfect (all, κ ≥ 0.678). Compared with uncorrected images, VME showed significant noise reduction in the phantom with titanium only (P < 0.017), and iMAR showed significantly lower noise in all regions and phantom configurations (all, P < 0.017). In all phantom configurations, deviations of attenuation were smallest in images reconstructed with iMAR. For VME, there was a tendency toward higher subjective image quality in phantoms with titanium compared with uncorrected images, however, without reaching statistical significance (P > 0.017). Subjective image quality was rated significantly higher for images reconstructed with iMAR than for uncorrected images in all phantom configurations (all, P < 0.017). CONCLUSIONS Iterative MAR showed better MAR capabilities than VME in settings with bilateral hip prosthesis or unilateral steel prosthesis. In settings with unilateral hip prosthesis made of titanium, VME and iMAR performed similarly well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effectiveness of the Anisotropic Analytical Algorithm (AAA) implemented in the Eclipse treatment planning system (TPS) was evaluated using theRadiologicalPhysicsCenteranthropomorphic lung phantom using both flattened and flattening-filter-free high energy beams. Radiation treatment plans were developed following the Radiation Therapy Oncology Group and theRadiologicalPhysicsCenterguidelines for lung treatment using Stereotactic Radiation Body Therapy. The tumor was covered such that at least 95% of Planning Target Volume (PTV) received 100% of the prescribed dose while ensuring that normal tissue constraints were followed as well. Calculated doses were exported from the Eclipse TPS and compared with the experimental data as measured using thermoluminescence detectors (TLD) and radiochromic films that were placed inside the phantom. The results demonstrate that the AAA superposition-convolution algorithm is able to calculate SBRT treatment plans with all clinically used photon beams in the range from 6 MV to 18 MV. The measured dose distribution showed a good agreement with the calculated distribution using clinically acceptable criteria of ±5% dose or 3mm distance to agreement. These results show that in a heterogeneous environment a 3D pencil beam superposition-convolution algorithms with Monte Carlo pre-calculated scatter kernels, such as AAA, are able to reliably calculate dose, accounting for increased lateral scattering due to the loss of electronic equilibrium in low density medium. The data for high energy plans (15 MV and 18 MV) showed very good tumor coverage in contrast to findings by other investigators for less sophisticated dose calculation algorithms, which demonstrated less than expected tumor doses and generally worse tumor coverage for high energy plans compared to 6MV plans. This demonstrates that the modern superposition-convolution AAA algorithm is a significant improvement over previous algorithms and is able to calculate doses accurately for SBRT treatment plans in the highly heterogeneous environment of the thorax for both lower (≤12 MV) and higher (greater than 12 MV) beam energies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The use of amorphous-silicon electronic portal imaging devices (a-Si EPIDs) for dosimetry is complicated by the effects of scattered radiation. In photon radiotherapy, primary signal at the detector can be accompanied by photons scattered from linear accelerator components, detector materials, intervening air, treatment room surfaces (floor, walls, etc) and from the patient/phantom being irradiated. Consequently, EPID measurements which presume to take scatter into account are highly sensitive to the identification of these contributions. One example of this susceptibility is the process of calibrating an EPID for use as a gauge of (radiological) thickness, where specific allowance must be made for the effect of phantom-scatter on the intensity of radiation measured through different thicknesses of phantom. This is usually done via a theoretical calculation which assumes that phantom scatter is linearly related to thickness and field-size. We have, however, undertaken a more detailed study of the scattering effects of fields of different dimensions when applied to phantoms of various thicknesses in order to derive scattered-primary ratios (SPRs) directly from simulation results. This allows us to make a more-accurate calibration of the EPID, and to qualify the appositeness of the theoretical SPR calculations. Methods: This study uses a full MC model of the entire linac-phantom-detector system simulated using EGSnrc/BEAMnrc codes. The Elekta linac and EPID are modelled according to specifications from the manufacturer and the intervening phantoms are modelled as rectilinear blocks of water or plastic, with their densities set to a range of physically realistic and unrealistic values. Transmissions through these various phantoms are calculated using the dose detected in the model EPID and used in an evaluation of the field-size-dependence of SPR, in different media, applying a method suggested for experimental systems by Swindell and Evans [1]. These results are compared firstly with SPRs calculated using the theoretical, linear relationship between SPR and irradiated volume, and secondly with SPRs evaluated from our own experimental data. An alternate evaluation of the SPR in each simulated system is also made by modifying the BEAMnrc user code READPHSP, to identify and count those particles in a given plane of the system that have undergone a scattering event. In addition to these simulations, which are designed to closely replicate the experimental setup, we also used MC models to examine the effects of varying the setup in experimentally challenging ways (changing the size of the air gap between the phantom and the EPID, changing the longitudinal position of the EPID itself). Experimental measurements used in this study were made using an Elekta Precise linear accelerator, operating at 6MV, with an Elekta iView GT a-Si EPID. Results and Discussion: 1. Comparison with theory: With the Elekta iView EPID fixed at 160 cm from the photon source, the phantoms, when positioned isocentrically, are located 41 to 55 cm from the surface of the panel. At this geometry, a close but imperfect agreement (differing by up to 5%) can be identified between the results of the simulations and the theoretical calculations. However, this agreement can be totally disrupted by shifting the phantom out of the isocentric position. Evidently, the allowance made for source-phantom-detector geometry by the theoretical expression for SPR is inadequate to describe the effect that phantom proximity can have on measurements made using an (infamously low-energy sensitive) a-Si EPID. 2. Comparison with experiment: For various square field sizes and across the range of phantom thicknesses, there is good agreement between simulation data and experimental measurements of the transmissions and the derived values of the primary intensities. However, the values of SPR obtained through these simulations and measurements seem to be much more sensitive to slight differences between the simulated and real systems, leading to difficulties in producing a simulated system which adequately replicates the experimental data. (For instance, small changes to simulated phantom density make large differences to resulting SPR.) 3. Comparison with direct calculation: By developing a method for directly counting the number scattered particles reaching the detector after passing through the various isocentric phantom thicknesses, we show that the experimental method discussed above is providing a good measure of the actual degree of scattering produced by the phantom. This calculation also permits the analysis of the scattering sources/sinks within the linac and EPID, as well as the phantom and intervening air. Conclusions: This work challenges the assumption that scatter to and within an EPID can be accounted for using a simple, linear model. Simulations discussed here are intended to contribute to a fuller understanding of the contribution of scattered radiation to the EPID images that are used in dosimetry calculations. Acknowledgements: This work is funded by the NHMRC, through a project grant, and supported by the Queensland University of Technology (QUT) and the Royal Brisbane and Women's Hospital, Brisbane, Australia. The authors are also grateful to Elekta for the provision of manufacturing specifications which permitted the detailed simulation of their linear accelerators and amorphous-silicon electronic portal imaging devices. Computational resources and services used in this work were provided by the HPC and Research Support Group, QUT, Brisbane, Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complete understanding of high-intensity focused ultrasound-induced temperature changes in tissue requires insight into all potential mechanisms for heat deposition. Applications of therapeutic ultrasound often utilize acoustic pressures capable of producing cavitation activity. Recognizing the ability of bubbles to transfer acoustic energy into heat generation, a study of the role bubbles play in tissue hyperthermia becomes necessary. These bubbles are typically less than 50μm. This dissertation examines the contribution of bubbles and their motion to an enhanced heating effect observed in a tissue-mimicking phantom. A series of experiments established a relationship between bubble activity and an enhanced temperature rise in the phantom by simultaneously measuring both the temperature change and acoustic emissions from bubbles. It was found that a strong correlation exists between the onset of the enhanced heating effect and observable cavitation activity. In addition, the likelihood of observing the enhanced heating effect was largely unaffected by the insonation duration for all but the shortest of insonation times, 0.1 seconds. Numerical simulations were used investigate the relative importance of two candidate mechanisms for heat deposition from bubbles as a means to quantify the number of bubbles required to produce the enhanced temperature rise. The energy deposition from viscous dissipation and the absorption of radiated sound from bubbles were considered as a function of the bubble size and the viscosity of the surrounding medium. Although both mechanisms were capable of producing the level of energy required for the enhanced heating effect, it was found that inertial cavitation, associated with high acoustic radiation and low viscous dissipation, coincided with the the nature of the cavitation best detected by the experimental system. The number of bubbles required to account for the enhanced heating effect was determined through the numerical study to be on the order of 150 or less.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermodynamic properties of dark energy fluids described by an equation of state parameter omega = p/rho are rediscussed in the context of FRW type geometries. Contrarily to previous claims, it is argued here that the phantom regime omega < -1 is not physically possible since that both the temperature and the entropy of every physical fluids must be always positive definite. This means that one cannot appeal to negative temperature in order to save the phantom dark energy hypothesis as has been recently done in the literature. Such a result remains true as long as the chemical potential is zero. However, if the phantom fluid is endowed with a non-null chemical potential, the phantom field hypothesis becomes thermodynamically consistent, that is, there are macroscopic equilibrium states with T > 0 and S > 0 in the course of the Universe expansion. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss modified gravity which includes negative and positive powers of curvature and provides gravitational dark energy. It is shown that in GR plus a term containing a negative power of curvature, cosmic speed-up may be achieved while the effective phantom phase (with w less than -1) follows when such a term contains a fractional positive power of curvature. Minimal coupling with matter makes the situation more interesting: even 1/R theory coupled with the usual ideal fluid may describe the (effective phantom) dark energy. The account of the R(2) term (consistent modified gravity) may help to escape cosmic doomsday.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified by choosing a functional form for the scalar potential and for the interaction term. However, in order to compare to observational data it is usually more convenient to use parametrizations of the dark energy equation of state and the evolution of the dark matter energy density. Once the relevant parameters are fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I give a few examples and show that it is possible for the effective equation of state for the scalar field to cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like linear interaction results from a simple parametrization of the coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations. In order to compute the rate of formation of massive objects we employ the spherical collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift (number counts).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As it follows from the classical analysis, the typical final state of a dark energy universe where a dominant energy condition is violated is a finite-time, sudden future singularity (a big rip). For a number of dark energy universes (including scalar phantom and effective phantom theories as well as specific quintessence models) we demonstrate that quantum effects play the dominant role near a big rip, driving the universe out of a future singularity (or, at least, moderating it). As a consequence, the entropy bounds with quantum corrections become well defined near a big rip. Similarly, black hole mass loss due to phantom accretion is not so dramatic as was expected: masses do not vanish to zero due to the transient character of the phantom evolution stage. Some examples of cosmological evolution for a negative, time-dependent equation of state are also considered with the same conclusions. The application of negative entropy (or negative temperature) occurrence in the phantom thermodynamics is briefly discussed.