862 resultados para permanent synchronous machine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order that the radius and thus ununiform structure of the teeth and otherelectrical and magnetic parts of the machine may be taken into consideration the calculation of an axial flux permanent magnet machine is, conventionally, doneby means of 3D FEM-methods. This calculation procedure, however, requires a lotof time and computer recourses. This study proves that also analytical methods can be applied to perform the calculation successfully. The procedure of the analytical calculation can be summarized into following steps: first the magnet is divided into slices, which makes the calculation for each section individually, and then the parts are submitted to calculation of the final results. It is obvious that using this method can save a lot of designing and calculating time. Thecalculation program is designed to model the magnetic and electrical circuits of surface mounted axial flux permanent magnet synchronous machines in such a way, that it takes into account possible magnetic saturation of the iron parts. Theresult of the calculation is the torque of the motor including the vibrations. The motor geometry and the materials and either the torque or pole angle are defined and the motor can be fed with an arbitrary shape and amplitude of three-phase currents. There are no limits for the size and number of the pole pairs nor for many other factors. The calculation steps and the number of different sections of the magnet are selectable, but the calculation time is strongly depending on this. The results are compared to the measurements of real prototypes. The permanent magnet creates part of the flux in the magnetic circuit. The form and amplitude of the flux density in the air-gap depends on the geometry and material of the magnetic circuit, on the length of the air-gap and remanence flux density of the magnet. Slotting is taken into account by using the Carter factor in the slot opening area. The calculation is simple and fast if the shape of the magnetis a square and has no skew in relation to the stator slots. With a more complicated magnet shape the calculation has to be done in several sections. It is clear that according to the increasing number of sections also the result will become more accurate. In a radial flux motor all sections of the magnets create force with a same radius. In the case of an axial flux motor, each radial section creates force with a different radius and the torque is the sum of these. The magnetic circuit of the motor, consisting of the stator iron, rotor iron, air-gap, magnet and the slot, is modelled with a reluctance net, which considers the saturation of the iron. This means, that several iterations, in which the permeability is updated, has to be done in order to get final results. The motor torque is calculated using the instantaneous linkage flux and stator currents. Flux linkage is called the part of the flux that is created by the permanent magnets and the stator currents passing through the coils in stator teeth. The angle between this flux and the phase currents define the torque created by the magnetic circuit. Due to the winding structure of the stator and in order to limit the leakage flux the slot openings of the stator are normally not made of ferromagnetic material even though, in some cases, semimagnetic slot wedges are used. In the slot opening faces the flux enters the iron almost normally (tangentially with respect to the rotor flux) creating tangential forces in the rotor. This phenomenon iscalled cogging. The flux in the slot opening area on the different sides of theopening and in the different slot openings is not equal and so these forces do not compensate each other. In the calculation it is assumed that the flux entering the left side of the opening is the component left from the geometrical centre of the slot. This torque component together with the torque component calculated using the Lorenz force make the total torque of the motor. It is easy to assume that when all the magnet edges, where the derivative component of the magnet flux density is at its highest, enter the slot openings at the same time, this will have as a result a considerable cogging torque. To reduce the cogging torquethe magnet edges can be shaped so that they are not parallel to the stator slots, which is the common way to solve the problem. In doing so, the edge may be spread along the whole slot pitch and thus also the high derivative component willbe spread to occur equally along the rotation. Besides forming the magnets theymay also be placed somewhat asymmetric on the rotor surface. The asymmetric distribution can be made in many different ways. All the magnets may have a different deflection of the symmetrical centre point or they can be for example shiftedin pairs. There are some factors that limit the deflection. The first is that the magnets cannot overlap. The magnet shape and the relative width compared to the pole define the deflection in this case. The other factor is that a shifting of the poles limits the maximum torque of the motor. If the edges of adjacent magnets are very close to each other the leakage flux from one pole to the other increases reducing thus the air-gap magnetization. The asymmetric model needs some assumptions and simplifications in order to limit the size of the model and calculation time. The reluctance net is made for symmetric distribution. If the magnets are distributed asymmetrically the flux in the different pole pairs will not be exactly the same. Therefore, the assumption that the flux flows from the edges of the model to the next pole pairs, in the calculation model from one edgeto the other, is not correct. If it were wished for that this fact should be considered in multi-pole pair machines, this would mean that all the poles, in other words the whole machine, should be modelled in reluctance net. The error resulting from this wrong assumption is, nevertheless, irrelevant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to describe hybrid drive design problems, the advantages and difficulties related to the drive. A review of possible hybrid constructions, benefits of parallel, series and series-parallel hybrids is done. In the thesis analytical and finite element calculations of permanent magnet synchronous machines with embedded magnets were done. The finite element calculations were done using Cedrat’s Flux 2D software. This machine is planned to be used as a motor-generator in a low power parallel hybrid vehicle. The boundary conditions for the design were found from Lucas-TVS Ltd., India. Design Requirements, briefly: • The system DC voltage level is 120 V, which implies Uphase = 49 V (RMS) in a three phase system. • The power output of 10 kW at base speed 1500 rpm (Torque of 65 Nm) is desired. • The maximum outer diameter should not be more than 250 mm, and the maximum core length should not exceed 40 mm. The main difficulties which the author met were the dimensional restrictions. After having designed and analyzed several possible constructions they were compared and the final design selected. Dimensioned and detailed design is performed. Effects of different parameters, such as the number of poles, number of turns and magnetic geometry are discussed. The best modification offers considerable reduction of volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master’s thesis mainly focuses on the design requirements of an Electric drive for Hybrid car application and its control strategy to achieve a wide speed range. It also emphasises how the control and performance requirements are transformed into its design variables. A parallel hybrid topology is considered where an IC engine and an electric drive share a common crank shaft. A permanent magnet synchronous machine (PMSM) is used as an electric drive machine. Performance requirements are converted into Machine design variables using the vector model of PMSM. Main dimensions of the machine are arrived using analytical approach and Finite Element Analysis (FEA) is used to verify the design and performance. Vector control algorithm was used to control the machine. The control algorithm was tested in a low power PMSM using an embedded controller. A prototype of 10 kW PMSM was built according to the design values. The prototype was tested in the laboratory using a high power converter. Tests were carried out to verify different operating modes. The results were in agreement with the calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctoral thesis presents a study on the design of tooth-coil permanent magnet synchronous machines. The electromagnetic properties of concentrated non-overlapping winding permanent magnet synchronous machines, or simply tooth-coil permanent magnet synchronous machines (TC-PMSMs), are studied in details. It is shown that current linkage harmonics play the deterministic role in the behavior of this type of machines. Important contributions are presented as regards of calculation of parameters of TC-PMSMs,particularly the estimation of inductances. The current linkage harmonics essentially define the air-gap harmonic leakage inductance, rotor losses and localized temporal inductance variation. It is proven by FEM analysis that inductance variation caused by the local temporal harmonic saturation results in considerable torque ripple, and can influence on sensorless control capabilities. Example case studies an integrated application of TC-IPMSMs in hybrid off-highway working vehicles. A methodology for increasing the efficiency of working vehicles is introduced. It comprises several approaches – hybridization, working operations optimization, component optimization and integration. As a result of component optimization and integration, a novel integrated electro-hydraulic energy converter (IEHEC) for off-highway working vehicles is designed. The IEHEC can considerably increase the operational efficiency of a hybrid working vehicle. The energy converter consists of an axial-piston hydraulic machine and an integrated TCIPMSM being built on the same shaft. The compact assembly of the electrical and hydraulic machines enhances the ability to find applications for such a device in the mobile environment of working vehicles.Usage of hydraulic fluid, typically used in working actuators, enables direct-immersion oil cooling of designed electrical machine, and further increases the torque- and power- densities of the whole device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct-driven permanent magnet synchronous machine for a small urban use electric vehicle is presented. The measured performance of the machine at the test bench as well as the performance over the modified New European Drive Cycle will be given. The effect of optimal current components, maximizing the efficiency and taking into account the iron loss, is compared with the simple id=0 – control. The machine currents and losses during the drive cycle are calculated and compared with each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axial-flux machines tend to have cooling difficulties since it is difficult to arrange continuous heat path between the stator stack and the frame. One important reason for this is that no shrink fitting of the stator is possible in an axial-flux machine. Using of liquid-cooled end shields does not alone solve this issue. Cooling of the rotor and the end windings may also be difficult at least in case of two-stator-single-rotor construction where air circulation in the rotor and in the end-winding areas may be difficult to arrange. If the rotor has significant losses air circulation via the rotor and behind the stator yokes should be arranged which, again, weakens the stator cooling. In this paper we study a novel way of using copper bars as extra heat transfer paths between the stator teeth and liquid cooling pools in the end shields. After this the end windings still suffer of low thermal conductivity and means for improving this by high-heat-conductance material was also studied. The design principle of each cooling system is presented in details. Thermal models based on Computational Fluid Dynamics (CFD) are used to analyse the temperature distribution in the machine. Measurement results are provided from different versions of the machine. The results show that significant improvements in the cooling can be gained by these steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrated winding permanent magnet machines and their electromagnetic properties are studied in this doctoral thesis. The thesis includes a number of main tasks related to the application of permanent magnets in concentrated winding open slot machines. Suitable analytical methods are required for the first design calculations of a new machine. Concentrated winding machines differ from conventional integral slot winding machines in such a way that adapted analytical calculation methods are needed. A simple analytical model for calculating the concentrated winding axial flux machines is provided. The next three main design tasks are discussed in more detail in the thesis. The magnetic length of the rotor surface magnet machines is studied, and it is shown that the traditional methods have to be modified also in this respect. An important topic in this study has been to evaluate and minimize the rotor permanent magnet Joule losses by using segmented magnets in the calculations and experiments. Determination of the magnetizing and leakage inductances for a concentrated winding machine and the torque production capability of concentrated winding machines with different pole pair numbers are studied, and the results are compared with the corresponding properties of integral slot winding machines. The thesis introduces a new practical permanent magnet motor type for industrial use. The special features of the machine are based on the option of using concentrated winding open slot constructions of permanent magnet synchronous machines in the normal speed ranges of industrial motors, for instance up to 3000 min-1, without excessive rotor losses. By applying the analytical equations and methods introduced in the thesis, a 37 kW 2400 min-1 12-slot 10-pole axial flux machine with rotor-surfacemounted magnets is designed. The performance of the designed motor is determined by experimental measurements and finite element calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hybrid electric vehicles (HEV) have attracted very much attention during the latest years. Increasing environmental concern and an increase in fuel prices are key factors for the growing interest towards the HEV. In a hybrid electric vehicle the power train consists of both a mechanical power system and an electric power transmission system. The major subsystems in the mechanical power system are the internal combustion engine which powers the vehicle; electric power transmission including an energy storage, power electronic inverter, hybrid control system; the electric motor drive that runs either in the generating mode or in the motoring mode to process the power flow between the energy storage and the electrical machine. This research includes two advanced electric motors for a parallel hybrid: induction machine and permanent magnets synchronous machine. In the thesis an induction motor and a permanent magnet motor are compared as propulsion motors. Electric energy storages are also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchronous motors are used mainly in large drives, for example in ship propulsion systems and in steel factories' rolling mills because of their high efficiency, high overload capacity and good performance in the field weakening range. This, however, requires an extremely good torque control system. A fast torque response and a torque accuracy are basic requirements for such a drive. For large power, high dynamic performance drives the commonly known principle of field oriented vector control has been used solely hitherto, but nowadays it is not the only way to implement such a drive. A new control method Direct Torque Control (DTC) has also emerged. The performance of such a high quality torque control as DTC in dynamically demanding industrial applications is mainly based on the accurate estimate of the various flux linkages' space vectors. Nowadays industrial motor control systems are real time applications with restricted calculation capacity. At the same time the control system requires a simple, fast calculable and reasonably accurate motor model. In this work a method to handle these problems in a Direct Torque Controlled (DTC) salient pole synchronous motor drive is proposed. A motor model which combines the induction law based "voltage model" and motor inductance parameters based "current model" is presented. The voltage model operates as a main model and is calculated at a very fast sampling rate (for example 40 kHz). The stator flux linkage calculated via integration from the stator voltages is corrected using the stator flux linkage computed from the current model. The current model acts as a supervisor that prevents only the motor stator flux linkage from drifting erroneous during longer time intervals. At very low speeds the role of the current model is emphasised but, nevertheless, the voltage model always stays the main model. At higher speeds the function of the current model correction is to act as a stabiliser of the control system. The current model contains a set of inductance parameters which must be known. The validation of the current model in steady state is not self evident. It depends on the accuracy of the saturated value of the inductances. Parameter measurement of the motor model where the supply inverter is used as a measurement signal generator is presented. This so called identification run can be performed prior to delivery or during drive commissioning. A derivation method for the inductance models used for the representation of the saturation effects is proposed. The performance of the electrically excited synchronous motor supplied with the DTC inverter is proven with experimental results. It is shown that it is possible to obtain a good static accuracy of the DTC's torque controller for an electrically excited synchronous motor. The dynamic response is fast and a new operation point is achieved without oscillation. The operation is stable throughout the speed range. The modelling of the magnetising inductance saturation is essential and cross saturation has to be considered as well. The effect of cross saturation is very significant. A DTC inverter can be used as a measuring equipment and the parameters needed for the motor model can be defined by the inverter itself. The main advantage is that the parameters defined are measured in similar magnetic operation conditions and no disagreement between the parameters will exist. The inductance models generated are adequate to meet the requirements of dynamically demanding drives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This bachelor’s thesis is a part of the research project realized in the summer 2011 in Lappeenranta University of Technology. The goal of the project was to develop an automation concept for controlling the externally excited synchronous motor. Thesis concentrates on the testing planning and testing the system. Testing plan was made for three sectors: For the PLC program testing, for the communication testing and for the whole system testing. PLC program was tested with white box and destructive methods. Communication testing was done by switching maximum com-munication speed and checked if communication was reliable. Whole system testing included among other things speed and torque controlling. The system was tested with exploratory testing also. This enabled more reliable and broader testing than with systematical testing only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows a computational methodology for the determination of synchronous machines parameters using load rejection test data. By machine modeling one can obtain the quadrature parameters through a load rejection under an arbitrary reference, reducing the present difficulties. The proposed method is applied to a real machine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents results of the validity study of the use of MATLAB/Simulink synchronous-machine block for power-system stability studies. Firstly, the waveforms of the theoretical synchronous-generator short-circuit currents are described. Thereafter, the comparison between the currents obtained through the simulation model in the sudden short-circuit test, are compared to the theoretical ones. Finally, the factory tests of two commercial generating units are compared to the response of the synchronous generator simulation block during sudden short-circuit, set with the same real data, with satisfactory results. This results show the validity of the use of this generator block for power plant simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrically excited synchronous machines with brushes and slip rings are popular but hardly used in inflammable and explosive environments. This paper proposes a new brushless electrically excited synchronous motor with a hybrid rotor. It eliminates the use of brushes and slip rings so as to improve the reliability and cost-effectiveness of the traction drive. The proposed motor is characterized with two sets of stator windings with two different pole numbers to provide excitation and drive torque independently. This paper introduces the structure and operating principle of the machine, followed by the analysis of the air-gap magnetic field using the finite-element method. The influence of the excitation winding's pole number on the coupling capability is studied and the operating characteristics of the machine are simulated. These are further examined by the experimental tests on a 16 kW prototype motor. The machine is proved to have good static and dynamic performance, which meets the stringent requirements for traction applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In distributed energy production, permanent magnet synchronous generators (PMSG) are often connected to the grid via frequency converters, such as voltage source line converters. The price of the converter may constitute a large part of the costs of a generating set. Some of the permanent magnet synchronous generators with converters and traditional separately excited synchronous generators couldbe replaced by direct-on-line (DOL) non-controlled PMSGs. Small directly networkconnected generators are likely to have large markets in the area of distributed electric energy generation. Typical prime movers could be windmills, watermills and internal combustion engines. DOL PMSGs could also be applied in island networks, such as ships and oil platforms. Also various back-up power generating systems could be carried out with DOL PMSGs. The benefits would be a lower priceof the generating set and the robustness and easy use of the system. The performance of DOL PMSGs is analyzed. The electricity distribution companies have regulations that constrain the design of the generators being connected to the grid. The general guidelines and recommendations are applied in the analysis. By analyzing the results produced by the simulation model for the permanent magnet machine, the guidelines for efficient damper winding parameters for DOL PMSGs are presented. The simulation model is used to simulate grid connections and load transients. The damper winding parameters are calculated by the finite element method (FEM) and determined from experimental measurements. Three-dimensional finite element analysis (3D FEA) is carried out. The results from the simulation model and 3D FEA are compared with practical measurements from two prototype axial flux permanent magnet generators provided with damper windings. The dimensioning of the damper winding parameters is case specific. The damper winding should be dimensioned based on the moment of inertia of the generating set. It is shown that the damper winding has optimal values to reach synchronous operation in the shortest period of time after transient operation. With optimal dimensioning, interferenceon the grid is minimized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thedirect torque control (DTC) has become an accepted vector control method besidethe current vector control. The DTC was first applied to asynchronous machines,and has later been applied also to synchronous machines. This thesis analyses the application of the DTC to permanent magnet synchronous machines (PMSM). In order to take the full advantage of the DTC, the PMSM has to be properly dimensioned. Therefore the effect of the motor parameters is analysed taking the control principle into account. Based on the analysis, a parameter selection procedure is presented. The analysis and the selection procedure utilize nonlinear optimization methods. The key element of a direct torque controlled drive is the estimation of the stator flux linkage. Different estimation methods - a combination of current and voltage models and improved integration methods - are analysed. The effect of an incorrect measured rotor angle in the current model is analysed andan error detection and compensation method is presented. The dynamic performance of an earlier presented sensorless flux estimation method is made better by improving the dynamic performance of the low-pass filter used and by adapting the correction of the flux linkage to torque changes. A method for the estimation ofthe initial angle of the rotor is presented. The method is based on measuring the inductance of the machine in several directions and fitting the measurements into a model. The model is nonlinear with respect to the rotor angle and therefore a nonlinear least squares optimization method is needed in the procedure. A commonly used current vector control scheme is the minimum current control. In the DTC the stator flux linkage reference is usually kept constant. Achieving the minimum current requires the control of the reference. An on-line method to perform the minimization of the current by controlling the stator flux linkage reference is presented. Also, the control of the reference above the base speed is considered. A new estimation flux linkage is introduced for the estimation of the parameters of the machine model. In order to utilize the flux linkage estimates in off-line parameter estimation, the integration methods are improved. An adaptive correction is used in the same way as in the estimation of the controller stator flux linkage. The presented parameter estimation methods are then used in aself-commissioning scheme. The proposed methods are tested with a laboratory drive, which consists of a commercial inverter hardware with a modified software and several prototype PMSMs.