931 resultados para peripheral aberrations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Venom of the honey bee Apis mellifera induced a protective effect against the induction of dicentric chromosomes by gamma radiation (2.0 Gy) in human peripheral blood lymphocytes which the cultures were treated with 0.00015 mul venom/1 ml medium 6 h before irradiation. In cultures to which the venom was added immediately before irradiation with 0.25, 1.0 and 2.0 Gy, no significant differences in number of dicentric chromosomes induced was observed when compared to cultures submitted to irradiation only. The venom did not induce clastogenic effects nor did it increase the frequency of sister chromatid exchanges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chromosomal aberrations (CA) and sister-chromatid exchanges (SCE) were investigated in peripheral lymphocytes of 15 nurses and nurse's aides handling cytostatic agents in hospital oncology units. Significantly increased frequencies were noted for both CA and SCE rates when the exposed individuals were compared with 15 nurses working in other hospital units and to a control sample matched by sex and age. This points to the need for emphasizing protective measures in the handling of anti-neoplastic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous research has indicated that schematic eyes incorporating aspheric surfaces but lacking gradient index are unable to model ocular spherical aberration and peripheral astigmatism simultaneously. This limits their use as wide-angle schematic eyes. This thesis challenges this assumption by investigating the flexibility of schematic eyes comprising aspheric optical surfaces and homogeneous optical media. The full variation of ocular component dimensions found in human eyes was established from the literature. Schematic eye parameter variants were limited to these dimensions. The levels of spherical aberration and peripheral astigmatism modelled by these schematic eyes were compared to the range of measured levels. These were also established from the literature. To simplify comparison of modelled and measured data, single value parameters were introduced; the spherical aberration function (SAF), and peripheral astigmatism function (PAF). Some ocular components variations produced a wide range of aberrations without exceeding the limits of human ocular components. The effect of ocular component variations on coma was also investigated, but no comparison could be made as no empirical data exists. It was demonstrated that by combined manipulation of a number of parameters in the schematic eyes it was possible to model all levels of ocular spherical aberration and peripheral astigmatism. However, the unique parameters of a human eye could not be obtained in this way, as a number of models could be used to produce the same spherical aberration and peripheral astigmatism, while giving very different coma levels. It was concluded that these schematic eyes are flexible enough to model the monochromatic aberrations tested, the absence of gradient index being compensated for by altering the asphericity of one or more surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To investigate the operation of the Shin-Nippon/Grand Seiko autorefractor and whether higher-order aberrations affect its peripheral refraction measurements. METHODS: Information on instrument design, together with parameters and equations used to obtain refraction, was obtained from a patent. A model eye simulating the operating principles was tested with an optical design program. Effects of induced defocus and astigmatism on the retinal image were used to calibrate the model eye to match the patent equations. Coma and trefoil were added to assess their effects on the image. Peripheral refraction of a physical model eye was measured along four visual field meridians with the Shin-Nippon/Grand Seiko autorefractor SRW-5000 and a Hartmann-Shack aberrometer, and simulated autorefractor peripheral refraction was derived using the Zernike coefficients from the aberrometer. RESULTS: In simulation, the autorefractor's square image was changed in size by defocus, into rectangles or parallelograms by astigmatism, and into irregular shapes by coma and trefoil. In the presence of 1.0 D oblique astigmatism, errors in refraction were proportional to the higher-order aberrations, with up to 0.8 D sphere and 1.5 D cylinder for ±0.6 μm of coma or trefoil coefficients with a 5-mm-diameter pupil. For the physical model eye, refraction with the aberrometer was similar in all visual field meridians, but refraction with the autorefractor changed more quickly along one oblique meridian and less quickly along the other oblique meridian than along the horizontal and vertical meridians. Simulations predicted that higher-order aberrations would affect refraction in oblique meridians, and this was supported by the experimental measurements with the physical model eye. CONCLUSIONS: The autorefractor's peripheral refraction measurements are valid for horizontal and vertical field meridians, but not for oblique field meridians. Similar instruments must be validated before being adopted outside their design scope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: We have reported that the changes in the accommodative response to electrical stimulation of the branches of the ciliary nerves in cats. (Miyagawa et al, PLoS One, 2014). We have also reported that no robust accommodative responses to the electrical stimulations of the sclera of peripheral cornea (SSPC) were observed in enucleated porcine eyes (Mihashi et al, VPOptics, 2014). In this study, accommodative responses to SSPC stimulation in cats and porcines were investigated. Methods: Two eyes of two cats under anesthesia and after they were sacrificed were studied. Three enucleated porcine eyes obtained from a local slaughterhouse were also studied. Trains of biphasic pulses (current, 3 mA; duration, 2 ms/phase; frequency, 40 Hz) were applied using a tungsten electrode (0.3mm diameter) from several orientations. Wavefront sensing with a compact wavefront aberrometer (Uday et al J Cataract Refract Surg, 2013) were performed before and 4 s (cat) and 10 s (pig) after the stimulations and wavefront aberrations including spherical errors were analyzed over a 4-mm pupil area. Results: In the first cat under anesthesia, at three out of seven stimulus positions, 0.2 D hyperopic accommodative responses were observed and in two orientations, myopic responses were observed. For the other cat, weak accommodative responses including astigmatic changes were observed. In the sacrificed condition of the second cat, 0.1 D myopic response was observed for one stimulus orientation and the smaller responses were observed at six out of eight stimulus positions. No accommodative responses were elicited for the enucleated porcine eyes. Conclusions: In the anesthetized cats, electrical stimulation of the SSPC induced accommodative responses; the responses were unstable and weaker than the responses by the ciliary nerve stimulations we observed in our previous study. Small accommodative responses were observed after one of two cats had been sacrificed, but no accommodative responses were detected in the enucleated porcine eyes. Further studies are needed to confirm difference in the accommodation functions in the two species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of my Ph.D. thesis is to enhance the visualization of the peripheral retina using wide-field optical coherence tomography (OCT) in a clinical setting.

OCT has gain widespread adoption in clinical ophthalmology due to its ability to visualize the diseases of the macula and central retina in three-dimensions, however, clinical OCT has a limited field-of-view of 300. There has been increasing interest to obtain high-resolution images outside of this narrow field-of-view, because three-dimensional imaging of the peripheral retina may prove to be important in the early detection of neurodegenerative diseases, such as Alzheimer's and dementia, and the monitoring of known ocular diseases, such as diabetic retinopathy, retinal vein occlusions, and choroid masses.

Before attempting to build a wide-field OCT system, we need to better understand the peripheral optics of the human eye. Shack-Hartmann wavefront sensors are commonly used tools for measuring the optical imperfections of the eye, but their acquisition speed is limited by their underlying camera hardware. The first aim of my thesis research is to create a fast method of ocular wavefront sensing such that we can measure the wavefront aberrations at numerous points across a wide visual field. In order to address aim one, we will develop a sparse Zernike reconstruction technique (SPARZER) that will enable Shack-Hartmann wavefront sensors to use as little as 1/10th of the data that would normally be required for an accurate wavefront reading. If less data needs to be acquired, then we can increase the speed at which wavefronts can be recorded.

For my second aim, we will create a sophisticated optical model that reproduces the measured aberrations of the human eye. If we know how the average eye's optics distort light, then we can engineer ophthalmic imaging systems that preemptively cancel inherent ocular aberrations. This invention will help the retinal imaging community to design systems that are capable of acquiring high resolution images across a wide visual field. The proposed model eye is also of interest to the field of vision science as it aids in the study of how anatomy affects visual performance in the peripheral retina.

Using the optical model from aim two, we will design and reduce to practice a clinical OCT system that is capable of imaging a large (800) field-of-view with enhanced visualization of the peripheral retina. A key aspect of this third and final aim is to make the imaging system compatible with standard clinical practices. To this end, we will incorporate sensorless adaptive optics in order to correct the inter- and intra- patient variability in ophthalmic aberrations. Sensorless adaptive optics will improve both the brightness (signal) and clarity (resolution) of features in the peripheral retina without affecting the size of the imaging system.

The proposed work should not only be a noteworthy contribution to the ophthalmic and engineering communities, but it should strengthen our existing collaborations with the Duke Eye Center by advancing their capability to diagnose pathologies of the peripheral retinal.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the potential for the third-order aberrations coma and trefoil to provide a signed cue to accommodation. It is first demonstrated theoretically (with some assumptions) that the point spread function is insensitive to the sign of spherical defocus in the presence of odd-order aberrations. In an experimental investigation, the accommodation response to a sinusoidal change in vergence (1–3 D, 0.2 Hz) of a monochromatic stimulus was obtained with a dynamic infrared optometer. Measurements were obtained in 10 young visually normal individuals with and without custom contact lenses that induced low and high values of r.m.s. trefoil (0.25, 1.03 μm) and coma (0.34, 0.94 μm). Despite variation between subjects, we did not find any statistically significant increase or decrease in the accommodative gain for low levels of trefoil and coma, although effects approached or reached significance for the high levels of trefoil and coma. Theoretical and experimental results indicate that the presence of Zernike third-order aberrations on the eye does not seem to play a crucial role in the dynamics of the accommodation response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Centers for Disease Control Guidelines recommend replacement of peripheral intravenous (IV) catheters every 72 to 96 hours. Routine replacement is thought to reduce the risk of phlebitis and bacteraemia. Catheter insertion is an unpleasant experience for patients and replacement may be unnecessary if the catheter remains functional and there are no signs of inflammation. Costs associated with routine replacement may be considerable. Objectives To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine the subbasal nerve density and tortuosity at 5 corneal locations and to investigate whether these microstructural observations correlate with corneal sensitivity. Method: Sixty eyes of 60 normal human subjects were recruited into 1 of 3 age groups, group 1: aged ,35 years, group 2: aged 35–50 years, and group 3: aged .50 years. All eyes were examined using slit-lamp biomicroscopy, noncontact corneal esthesiometry, and slit scanning in vivo confocal microscopy. Results: The mean subbasal nerve density and the mean corneal sensitivity were greatest centrally (14,731 6 6056 mm/mm2 and 0.38 6 0.21 millibars, respectively) and lowest in the nasal mid periphery (7850 6 4947 mm/mm2 and 0.49 6 0.25 millibars, respectively). The mean subbasal nerve tortuosity coefficient was greatest in the temporal mid periphery (27.3 6 6.4) and lowest in the superior mid periphery (19.3 6 14.1). There was no significant difference in mean total subbasal nerve density between age groups. However, corneal sensation (P = 0.001) and subbasal nerve tortuosity (P = 0.004) demonstrated significant differences between age groups. Subbasal nerve density only showed significant correlations with corneal sensitivity threshold in the temporal cornea and with subbasal nerve tortuosity in the inferior and nasal cornea. However, these correlations were weak. Conclusions: This study quantitatively analyzes living human corneal nerve structure and an aspect of nerve function. There is no strong correlation between subbasal nerve density and corneal sensation. This study provides useful baseline data for the normal living human cornea at central and mid-peripheral locations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over recent decades, the flow of television programmes and services between nations has prompted concerns about `Cultural Imperialism', the idea that the powerful metropolitan nations at the centre of the world system are breaking down the integrity and autonomy of the peripheral countries. New Patterns in Global Television challenges that notion by showing that some of the countries outside the traditionally dominant centres have now developed strong television industries of their own, and have been expanding into regional markets, especially - but not exclusively - where linguistic and cultural similarities exist. This book brings together contributions from specialist researchers on the most dynamic of these regions: Latin America, India, the Middle East, Greater China and, in the English-speaking world, Canada and Australia. It provides the first comprehensive overview of the new patterns of flow in international television programme exchange and service provision in the satellite era, patterns unrecognised by the perspective of the prevailing theoretical orthodoxies in international communication research and policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. This study was conducted to determine the magnitude of pupil center shift between the illumination conditions provided by corneal topography measurement (photopic illuminance) and by Hartmann-Shack aberrometry (mesopic illuminance) and to investigate the importance of this shift when calculating corneal aberrations and for the success of wavefront-guided surgical procedures. METHODS. Sixty-two subjects with emmetropia underwent corneal topography and Hartmann-Shack aberrometry. Corneal limbus and pupil edges were detected, and the differences between their respective centers were determined for both procedures. Corneal aberrations were calculated using the pupil centers for corneal topography and for Hartmann-Shack aberrometry. Bland-Altmann plots and paired t-tests were used to analyze the differences between corneal aberrations referenced to the two pupil centers. RESULTS. The mean magnitude (modulus) of the displacement of the pupil with the change of the illumination conditions was 0.21 ± 0.11 mm. The effect of this pupillary shift was manifest for coma corneal aberrations for 5-mm pupils, but the two sets of aberrations calculated with the two pupil positions were not significantly different. Sixty-eight percent of the population had differences in coma smaller than 0.05 µm, and only 4% had differences larger than 0.1 µm. Pupil displacement was not large enough to significantly affect other higher-order Zernike modes. CONCLUSIONS. Estimated corneal aberrations changed slightly between photopic and mesopic illumination conditions given by corneal topography and Hartmann-Shack aberrometry. However, this systematic pupil shift, according to the published tolerances ranges, is enough to deteriorate the optical quality below the theoretically predicted diffraction limit of wavefront-guided corneal surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Refraction may be affected by the forces of lids and extraocular muscles when eye direction and head direction are not aligned (oblique viewing) which might potentially influence past findings on peripheral refraction of the eye. We investigated the effect of oblique viewing on axial and peripheral refraction. In a first experiment, cycloplegic axial refractions were determined when subjects' heads were positioned to look straight-ahead through an open-view autorefractor and when the heads were rotated to the right or left by 30° with compensatory eye rotation (oblique viewing). Subjects were 16 young emmetropes (18–35 years), 22 young myopes (19–36 years) and 15 old emmetropes (45–60 years). In a second experiment, cycloplegic peripheral refraction measurements were taken out to ±34° horizontally from fixation while the subjects rotated their heads to match the peripheral refraction angles (eye in primary position with respect to the head) or the eyes were rotated with respect to the head (oblique viewing). Subjects were 10 emmetropes and 10 myopes. We did not find any significant changes in axial or peripheral refraction upon oblique viewing for any of the subject groups. In general for the range of horizontal angles used, it is not critical whether or not the eye is rotated with respect to the head during axial or peripheral refraction.