4 resultados para periblast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The yolk syncytial layer (YSL) has been regarded as one of the main obstacles for a successful cryopreservation of fish embryos. The purpose of this study was to identify and characterize the YSL in Prochilodus lineatus, a fish species found in southeastern Brazil and considered a very important fishery resource. Embryos were obtained through artificial breeding by hormonal induction. After fertilization, the eggs were incubated in vertical incubators with a controlled temperature (28 degrees C). Embryos were collected in several periods of development up to hatching and then fixed with 2% glutaralclehyde and 4% paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.3). Morphological analyses were carried out under either light, transmission or scanning electron microscopy. The formation of the YSL in P. lineatus embryos starts at the end of the cleavage stage (morula), mainly at the margin of the blastoderm, and develops along the embryo finally covering the entire yolk mass (late gastrula) and producing a distinct intermediate zone between the yolk and the endodermal cells. The YSL was characterized by the presence of microvilli on the contact region with the yolk endoderm. A cytoplasmic mass, full of mitochondria, vacuoles, ribosomes, endomembrane nets and euchromatic nuclei, indicated a high metabolic activity. This layer is shown as an interface between the yolk and the embryo cells that, besides sustaining and separating the yolk, acts as a structure that makes it available for the embryo. The structural analyses identified no possible barriers to cryoprotectant penetration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This survey was performed to characterize the embryogenesis of Prochilodus lineatus. Seven stages of embryo development were identified - zygote, cleavage, blastula, gastrula, segmentation, larval and hatching - after a period of incubation of 22h (24 degrees C) or 14h (28 degrees C). The following cleavage pattern was identified: the first plane was vertical (2 blastomeres); the second was vertical and perpendicular to the first (4 blastorneres); the third was vertical and parallel to the first (4 x 2); the fourth cleavage was vertical and parallel to the second (4 x 4); the fifth was vertical and parallel to the first (4 x 8); and the sixth cleavage was horizontal (64 blastomeres). At the blastula stage (3.0-4.0 h (24 degrees C); 1.66-2.0h (28 degrees C) irregular spaces were detected and periblast structuring was initiated. At the gastrula stage (4.0-8.0 h (24 degrees C); 3.0-6.0 h (28 degrees C) the epiboly, convergence and cell movements, as well as the formation of embryonic layers, had begun. The segmentation stage (10.0-15.0h (24 degrees C); 7.0-10.0h (28 degrees C)) was characterized by a rudimentary formation of organs and systems (somites, optic vesicle and intestinal delimitation). The embryo at the larval stage (16.0-21.0 h (24 degrees C); 11.0-13.0 h (28 degrees C)) showed a free tail, more than 25 somites, an optic vesicle and a ready-to-hatch larval shape. The blastomeres at cleavage stage had disorganized nuclei indicating high mitotic activity. At gastrula, the blastomeres and the periblast had euchromatic nuclei and a large number of mitochondria and vesicles. The yolk was organized into globose sacs, which were dispersed into small pieces prior to absorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report contains the occurrence data for dinoflagellate cysts recorded from 163 samples taken from Sites 902 through 906, during Ocean Drilling Program (ODP) Leg 150. The dinoflagellate cyst (dinocyst) stratigraphy has been presented in Mountain, Miller, Blum, et al. (1994, doi:10.2973/odp.proc.ir.150.1994), and was based on these data. This report provides the full dinocyst data set supporting the dinocyst stratigraphic interpretations made in Mountain, Miller, Blum, et al. (1994). For Miocene shipboard dinocyst stratigraphy, I delineated 10 informal zones: pre-A, and A through I, in ascending stratigraphic order. These zones are defined in Shipboard Scientific Party (1994a, doi:10.2973/odp.proc.ir.150.103.1994), and are based on my studies of Miocene dinocyst stratigraphy in the Maryland and Virginia coastal plain (de Verteuil and Norris, 1991, 1992; de Verteuil, 1995). This zonation has been slightly revised (de Verteuil and Norris, 1996), and the new formal zone definitions are repeated below. Each new zone has an alpha-numeric abbreviation starting with "DN" (for Dinoflagellate Neogene). The equivalence between the informal zones reported in Mountain, Miller, Blum, et al. (1994), and the new DN zones is illustrated in Figure 1. For clarity, I delineated both zonations in the range charts that accompany this report (Tables 1-6). De Verteuil and Norris (1996a), using these and other data, correlated the DN zonation with the geological time scale of Berggren et al. (1995). Figure 2 summarizes these correlations and can be used to check the chronostratigraphic position of samples in this report, as determined by dinocyst stratigraphy. A thorough discussion of the basis for, and levels of uncertainty associated with, these correlations to the Cenozoic time scale can be found in de Verteuil and Norris (1996a). The Appendix lists all the dinocyst taxa recorded during shipboard analyses of Leg 150 samples. Open nomenclature is used for undescribed taxa. The range charts and Appendix also include reference to several new taxa that de Verteuil and Norris (1996b) described from Miocene coastal plain strata in Maryland and Virginia. Names of these taxa in Tables 1 through 6 and in the Appendix of this report are not intended for effective publication as defined in the International Code of Botanical Nomenclature (ICBN, Greuter et al., 1994). Therefore, taxonomic nomenclature contained in this report is not to be treated as meeting the conditions of effective and valid publication (ICBN; Article 29).