842 resultados para performance-based engineering
Resumo:
The objective for this thesis is to outline a Performance-Based Engineering (PBE) framework to address the multiple hazards of Earthquake (EQ) and subsequent Fire Following Earthquake (FFE). Currently, fire codes for the United States are largely empirical and prescriptive in nature. The reliance on prescriptive requirements makes quantifying sustained damage due to fire difficult. Additionally, the empirical standards have resulted from individual member or individual assembly furnace testing, which have been shown to differ greatly from full structural system behavior. The very nature of fire behavior (ignition, growth, suppression, and spread) is fundamentally difficult to quantify due to the inherent randomness present in each stage of fire development. The study of interactions between earthquake damage and fire behavior is also in its infancy with essentially no available empirical testing results. This thesis will present a literature review, a discussion, and critique of the state-of-the-art, and a summary of software currently being used to estimate loss due to EQ and FFE. A generalized PBE framework for EQ and subsequent FFE is presented along with a combined hazard probability to performance objective matrix and a table of variables necessary to fully implement the proposed framework. Future research requirements and summary are also provided with discussions of the difficulties inherent in adequately describing the multiple hazards of EQ and FFE.
Resumo:
L’approccio performance-based nell’Ingegneria sismica è una metodologia di progetto che tiene esplicitamente in conto la performance dell’edificio tra i criteri progettuali. Nell’ambito dei metodi PBEE (Performance-Based Earthquake Engineering) di seconda generazione, quello proposto dal PEER (Pacific Earthquake Engineering Research Center) risulta essere il più diffuso. In esso la performance dell’edificio oggetto di studio viene valutata in termini quantitativi secondo le 3D’s (dollars, deaths, downtime – soldi, decessi, inutilizzo), quantità di notevole interesse per l’utente finale. Il metodo si compone di quattro step, indipendenti tra loro fino alla sintesi finale. Essi sono: l’analisi di pericolosità, l’analisi strutturale, l’analisi di danno, l’analisi delle perdite o di loss. Il risultato finale è la curva di loss, che assegna ad ogni possibile perdita economica conseguente all’evento sismico una probabilità di superamento nell’arco temporale di riferimento. Dopo la presentazione del metodo PEER, si è provveduto ad una sua applicazione su di un caso di studio, nella fattispecie un telaio piano di quattro campate, multipiano, in calcestruzzo armato, costruito secondo le norme del ’92. Per l’analisi di pericolosità si è fatto ricorso alle mappe di pericolosità disponibili sul sito INGV, mentre per l’analisi strutturale si è utilizzato il software open-source OpenSees. Le funzioni di fragilità e quelle di loss sono state sviluppate facendo riferimento alla letteratura scientifica, in particolare il bollettino Fib numero 68 “Probabilistic performance-based seismic design”. In questa sede ci si è concentrati unicamente sulla stima delle perdite economiche, tralasciando le altre due variabili decisionali. Al termine del procedimento si è svolta un’analisi di sensitività per indagare quali parametri influenzino maggiormente la curva di loss. Data la curva di pericolosità, il legame EDP(IM) e la deformazione ultima a collasso risultano essere i più rilevanti sul risultato dell’analisi.
Resumo:
The integral variability of raw materials, lack of awareness and appreciation of the technologies for achieving quality control and lack of appreciation of the micro and macro environmental conditions that the structures will be subjected, makes modern day concreting a challenge. This also makes Designers and Engineers adhere more closely to prescriptive standards developed for relatively less aggressive environments. The data from exposure sites and real structures prove, categorically, that the prescriptive specifications are inadequate for chloride environments. In light of this shortcoming, a more pragmatic approach would be to adopt performance-based specifications which are familiar to industry in the form of specification for mechanical strength. A recently completed RILEM technical committee made significant advances in making such an approach feasible.
Furthering a performance-based specification requires establishment of reliable laboratory and on-site test methods, as well as easy to perform service-life models. This article highlights both laboratory and on-site test methods for chloride diffusivity/electrical resistivity and the relationship between these tests for a range of concretes. Further, a performance-based approach using an on-site diffusivity test is outlined that can provide an easier to apply/adopt practice for Engineers and asset managers for specifying/testing concrete structures.
Resumo:
Bridges with deck supported on either sliding or elastomeric bearings are very common in mid-seismicity regions. Their main seismic vulnerabilities are related to the pounding of the deck against abutments or between the different deck elements. A simplified model of the longitudinal behavior of those bridges will allow to characterize the reaction forces developed during pounding using the Pacific Earthquake Engineering Research Center framework formula. In order to ensure the general applicability of the results obtained, a large number of system parameter combinations will be considered. The heart of the formula is the identification of suitable intermediate variables. First, the pseudo acceleration spectral value for the fundamental period of the system (Sa(Ts)) will be used as an intensity measure (IM). This IM will result in a very large non-explained variability of the engineering demand parameter. A portion of this variability will be proved to be related to the relative content of high-frequency energy in the input motion. Two vector-valued IMs including a second parameter taking this energy content into account will then be considered. For both of them, a suitable form for the conditional intensity dependence of the response will be obtained. The question of which one to choose will also be analyzed. Finally, additional issues related to the IM will be studied: its applicability to pulse-type records, the validity of scaling records and the sufficiency of the IM.
Resumo:
The design of containment walls suffering seismic loads traditionally has been realized with methods based on pseudoanalitic procedures such as Mononobe- Okabe's method, which it has led in certain occasions to insecure designs, that they have produced the ruin of many containment walls suffering the action of an earthquake. A method is proposed in this papers for the design of containment walls in different soils, suffering to the action of an earthquake, based on the Performance-Based Seismic Design.
Resumo:
The design of containment walls suffering seismic loads traditionally has been realized with methods based on pseudoanalitic procedures such as Mononobe-Okabe's method, which it has led in certain occasions to insecure designs, that they have produced the ruin of many containment walls suffering the action of an earthquake. The recommendations gathered in Mononobe-Okabe's theory have been included in numerous Codes of Seismic Design. It is clear that a revision of these recommendations must be done. At present there is taking place an important review of the design methods of anti-seismic structures such as containment walls placed in an area of numerous earthquakes, by means of the introduction at the beginning of the decade of 1990 the Displacement Response Spectrum (DRS) and the Capacity Demand Diagram (CDD) that suppose an important change in the way of presenting the Elastic Response Spectrum (ERS). On the other hand in case of action of an earthquake, the dynamic characteristics of a soil have been referred traditionally to the speed of the shear waves that can be generated in a site, together with the characteristics of plasticity and damping of the soil. The Principle of the energy conservation explains why a shear upward propagating seismic wave can be amplified when travelling from a medium with high shear wave velocity (rock) to other medium with lower velocity (soil deposit), as it happened in the earthquake of Mexico of 1985. This amplification is a function of the speed gradient or of the contrast of impedances in the border of both types of mediums. A method is proposed in this paper for the design of containment walls in different soils, suffering to the action of an earthquake, based on the Performance-Based Seismic Design.
Resumo:
To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems—stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.
Resumo:
Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.
Resumo:
To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems – stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.
Resumo:
Performance-based maintenance contracts differ significantly from material and method-based contracts that have been traditionally used to maintain roads. Road agencies around the world have moved towards a performance-based contract approach because it offers several advantages like cost saving, better budgeting certainty, better customer satisfaction with better road services and conditions. Payments for the maintenance of road are explicitly linked to the contractor successfully meeting certain clearly defined minimum performance indicators in these contracts. Quantitative evaluation of the cost of performance-based contracts has several difficulties due to the complexity of the pavement deterioration process. Based on a probabilistic analysis of failures of achieving multiple performance criteria over the length of the contract period, an effort has been made to develop a model that is capable of estimating the cost of these performance-based contracts. One of the essential functions of such model is to predict performance of the pavement as accurately as possible. Prediction of future degradation of pavement is done using Markov Chain Process, which requires estimating transition probabilities from previous deterioration rate for similar pavements. Transition probabilities were derived using historical pavement condition rating data, both for predicting pavement deterioration when there is no maintenance, and for predicting pavement improvement when maintenance activities are performed. A methodological framework has been developed to estimate the cost of maintaining road based on multiple performance criteria such as crack, rut and, roughness. The application of the developed model has been demonstrated via a real case study of Miami Dade Expressways (MDX) using pavement condition rating data from Florida Department of Transportation (FDOT) for a typical performance-based asphalt pavement maintenance contract. Results indicated that the pavement performance model developed could predict the pavement deterioration quite accurately. Sensitivity analysis performed shows that the model is very responsive to even slight changes in pavement deterioration rate and performance constraints. It is expected that the use of this model will assist the highway agencies and contractors in arriving at a fair contract value for executing long term performance-based pavement maintenance works.
Resumo:
Le dimensionnement basé sur la performance (DBP), dans une approche déterministe, caractérise les objectifs de performance par rapport aux niveaux de performance souhaités. Les objectifs de performance sont alors associés à l'état d'endommagement et au niveau de risque sismique établis. Malgré cette approche rationnelle, son application est encore difficile. De ce fait, des outils fiables pour la capture de l'évolution, de la distribution et de la quantification de l'endommagement sont nécessaires. De plus, tous les phénomènes liés à la non-linéarité (matériaux et déformations) doivent également être pris en considération. Ainsi, cette recherche montre comment la mécanique de l'endommagement pourrait contribuer à résoudre cette problématique avec une adaptation de la théorie du champ de compression modifiée et d'autres théories complémentaires. La formulation proposée adaptée pour des charges monotones, cycliques et de type pushover permet de considérer les effets non linéaires liés au cisaillement couplé avec les mécanismes de flexion et de charge axiale. Cette formulation est spécialement appliquée à l'analyse non linéaire des éléments structuraux en béton soumis aux effets de cisaillement non égligeables. Cette nouvelle approche mise en œuvre dans EfiCoS (programme d'éléments finis basé sur la mécanique de l'endommagement), y compris les critères de modélisation, sont également présentés ici. Des calibrations de cette nouvelle approche en comparant les prédictions avec des données expérimentales ont été réalisées pour les murs de refend en béton armé ainsi que pour des poutres et des piliers de pont où les effets de cisaillement doivent être pris en considération. Cette nouvelle version améliorée du logiciel EFiCoS a démontrée être capable d'évaluer avec précision les paramètres associés à la performance globale tels que les déplacements, la résistance du système, les effets liés à la réponse cyclique et la quantification, l'évolution et la distribution de l'endommagement. Des résultats remarquables ont également été obtenus en référence à la détection appropriée des états limites d'ingénierie tels que la fissuration, les déformations unitaires, l'éclatement de l'enrobage, l'écrasement du noyau, la plastification locale des barres d'armature et la dégradation du système, entre autres. Comme un outil pratique d'application du DBP, des relations entre les indices d'endommagement prédits et les niveaux de performance ont été obtenus et exprimés sous forme de graphiques et de tableaux. Ces graphiques ont été développés en fonction du déplacement relatif et de la ductilité de déplacement. Un tableau particulier a été développé pour relier les états limites d'ingénierie, l'endommagement, le déplacement relatif et les niveaux de performance traditionnels. Les résultats ont démontré une excellente correspondance avec les données expérimentales, faisant de la formulation proposée et de la nouvelle version d'EfiCoS des outils puissants pour l'application de la méthodologie du DBP, dans une approche déterministe.
Resumo:
Part 6: Engineering and Implementation of Collaborative Networks
Resumo:
A conventional method for seismic strengthening of masonry walls is externally application of reinforced concrete layer (shotcrete). However, due to the lack of analytical and experimental information on the behavior of strengthened walls, the design procedures are usually followed based on the empirical relations. Using these design procedures have resulted in massive strengthening details in retrofitting projects. This paper presents a computational framework for nonlinear analysis of strengthened masonry walls and its versatility has been verified by comparing the numerical and experimental results. Based on the developed numerical model and available experimental information, design relations and failure modes are proposed for strengthened walls in accordance with the ASCE 41 standard. Finally, a sample masonry structure has been strengthened using the proposed and available conventional methods. It has been shown that using the proposed method results in lower strengthening details and appropriate (ductile) failure modes