844 resultados para performance-based design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bridges with deck supported on either sliding or elastomeric bearings are very common in mid-seismicity regions. Their main seismic vulnerabilities are related to the pounding of the deck against abutments or between the different deck elements. A simplified model of the longitudinal behavior of those bridges will allow to characterize the reaction forces developed during pounding using the Pacific Earthquake Engineering Research Center framework formula. In order to ensure the general applicability of the results obtained, a large number of system parameter combinations will be considered. The heart of the formula is the identification of suitable intermediate variables. First, the pseudo acceleration spectral value for the fundamental period of the system (Sa(Ts)) will be used as an intensity measure (IM). This IM will result in a very large non-explained variability of the engineering demand parameter. A portion of this variability will be proved to be related to the relative content of high-frequency energy in the input motion. Two vector-valued IMs including a second parameter taking this energy content into account will then be considered. For both of them, a suitable form for the conditional intensity dependence of the response will be obtained. The question of which one to choose will also be analyzed. Finally, additional issues related to the IM will be studied: its applicability to pulse-type records, the validity of scaling records and the sufficiency of the IM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le dimensionnement basé sur la performance (DBP), dans une approche déterministe, caractérise les objectifs de performance par rapport aux niveaux de performance souhaités. Les objectifs de performance sont alors associés à l'état d'endommagement et au niveau de risque sismique établis. Malgré cette approche rationnelle, son application est encore difficile. De ce fait, des outils fiables pour la capture de l'évolution, de la distribution et de la quantification de l'endommagement sont nécessaires. De plus, tous les phénomènes liés à la non-linéarité (matériaux et déformations) doivent également être pris en considération. Ainsi, cette recherche montre comment la mécanique de l'endommagement pourrait contribuer à résoudre cette problématique avec une adaptation de la théorie du champ de compression modifiée et d'autres théories complémentaires. La formulation proposée adaptée pour des charges monotones, cycliques et de type pushover permet de considérer les effets non linéaires liés au cisaillement couplé avec les mécanismes de flexion et de charge axiale. Cette formulation est spécialement appliquée à l'analyse non linéaire des éléments structuraux en béton soumis aux effets de cisaillement non égligeables. Cette nouvelle approche mise en œuvre dans EfiCoS (programme d'éléments finis basé sur la mécanique de l'endommagement), y compris les critères de modélisation, sont également présentés ici. Des calibrations de cette nouvelle approche en comparant les prédictions avec des données expérimentales ont été réalisées pour les murs de refend en béton armé ainsi que pour des poutres et des piliers de pont où les effets de cisaillement doivent être pris en considération. Cette nouvelle version améliorée du logiciel EFiCoS a démontrée être capable d'évaluer avec précision les paramètres associés à la performance globale tels que les déplacements, la résistance du système, les effets liés à la réponse cyclique et la quantification, l'évolution et la distribution de l'endommagement. Des résultats remarquables ont également été obtenus en référence à la détection appropriée des états limites d'ingénierie tels que la fissuration, les déformations unitaires, l'éclatement de l'enrobage, l'écrasement du noyau, la plastification locale des barres d'armature et la dégradation du système, entre autres. Comme un outil pratique d'application du DBP, des relations entre les indices d'endommagement prédits et les niveaux de performance ont été obtenus et exprimés sous forme de graphiques et de tableaux. Ces graphiques ont été développés en fonction du déplacement relatif et de la ductilité de déplacement. Un tableau particulier a été développé pour relier les états limites d'ingénierie, l'endommagement, le déplacement relatif et les niveaux de performance traditionnels. Les résultats ont démontré une excellente correspondance avec les données expérimentales, faisant de la formulation proposée et de la nouvelle version d'EfiCoS des outils puissants pour l'application de la méthodologie du DBP, dans une approche déterministe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In general, design approaches for durability can be divided into prescriptive design concepts and performance-based design concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire incident in buildings is common, so the fire safety design of the framed structure is imperative, especially for the unprotected or partly protected bare steel frames. However, software for structural fire analysis is not widely available. As a result, the performance-based structural fire design is urged on the basis of using user-friendly and conventional nonlinear computer analysis programs so that engineers do not need to acquire new structural analysis software for structural fire analysis and design. The tool is desired to have the capacity of simulating the different fire scenarios and associated detrimental effects efficiently, which includes second-order P-D and P-d effects and material yielding. Also the nonlinear behaviour of large-scale structure becomes complicated when under fire, and thus its simulation relies on an efficient and effective numerical analysis to cope with intricate nonlinear effects due to fire. To this end, the present fire study utilizes a second order elastic/plastic analysis software NIDA to predict structural behaviour of bare steel framed structures at elevated temperatures. This fire study considers thermal expansion and material degradation due to heating. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. This finite element stiffness formulation of beam-column elements is derived from the fifth-order PEP element which facilitates the computer modeling by one member per element. The Newton-Raphson method is used in the nonlinear solution procedure in order to trace the nonlinear equilibrium path at specified elevated temperatures. Several numerical and experimental verifications of framed structures are presented and compared against solutions in literature. The proposed method permits engineers to adopt the performance-based structural fire analysis and design using typical second-order nonlinear structural analysis software.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire incident in buildings is common in Hong Kong and this could lead to heavy casualties due to its high population density, so the fire safety design of the framed structure is an important research topic. This paper describes a computer tool for determination of capacity of structural safety against various fire scenarios and the well-accepted second-order direct plastic analysis is adopted for simulation of material yielding and buckling. A computer method is developed to predict structural behaviour of bare steel framed structures at elevated temperatures but the work can be applied to structures made of other materials. These effects of thermal expansion and material degradation due to heating are required to be considered in order to capture the actual behavior of the structure under fire. Degradation of material strength with increasing temperature is included by a set of temperature-stress-strain curves according to BS5950 Part 8 mainly, which implicitly allows for creep deformation. Several numerical and experimental verifications of framed structures are presented and compared against solutions by other researchers. The proposed method allows us to adopt the truly performance-based structural fire analysis and design with significant saving in cost and time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision-making in the façade design process has a significant influence on several aspects of indoor environment, thereby making it a complex and multi-objective optimisation process. There are two principal barriers in the process of indentifying an optimal façade solution. Firstly, most existing indoor environmental evaluation methods do not account for all the indoor environmental quality (IEQ) aspects relevant to façade design. Secondly, the relationship between the physical properties of a particular façade design option and the resulting economic benefits accrued during its service-life is unknown. In this paper, we introduce the bases for establishing relationships between occupant productivity and the combinatorial effects of four key façade-related IEQ aspects, namely, thermal comfort, aural comfort, visual comfort and air quality, on occupant productivity. The proposed framework's potential is tested against seven existing experimental investigations and its applicability is illustrated by a simple façade design example. The proposed approach ultimately aims to provide a quantitative economic measure of alternative façade design options that would be applicable to early design stage. Aspects of the work that require further experimental validation are identified. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Best concrete research paper by a student - Research has shown that the cost of managing structures puts high strain on the infrastructure budget, with
estimates of over 50% of the European construction budget being dedicated to repair and maintenance. If reinforced concrete
structures are not suitably designed and adequately maintained, their service life is compromised, resulting in the full economic
value of the investment not realised. The issue is more prevalent in coastal structures as a result of combinations of aggressive
actions, such as those caused by chlorides, sulphates and cyclic freezing and thawing.
It is a common practice nowadays to ensure durability of reinforced concrete structures by specifying a concrete mix and a
nominal cover at the design stage to cater for the exposure environment. This in theory should produce the performance required
to achieve a specified service life. Although the European Standard EN 206-1 specifies variations in the exposure environment,
it does not take into account the macro and micro climates surrounding structures, which have a significant influence on their
performance and service life. Therefore, in order to construct structures which will perform satisfactorily in different exposure
environments, the following two aspects need to be developed: a performance based specification to supplement EN 206-1
which will outline the expected performance of the structure in a given environment; and a simple yet transferrable procedure
for assessing the performance of structures in service termed KPI Theory. This will allow the asset managers not only to design
structures for the intended service life, but also to take informed maintenance decisions should the performance in service fall
short of what was specified. This paper aims to discuss this further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of containment walls suffering seismic loads traditionally has been realized with methods based on pseudoanalitic procedures such as Mononobe- Okabe's method, which it has led in certain occasions to insecure designs, that they have produced the ruin of many containment walls suffering the action of an earthquake. A method is proposed in this papers for the design of containment walls in different soils, suffering to the action of an earthquake, based on the Performance-Based Seismic Design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of containment walls suffering seismic loads traditionally has been realized with methods based on pseudoanalitic procedures such as Mononobe-Okabe's method, which it has led in certain occasions to insecure designs, that they have produced the ruin of many containment walls suffering the action of an earthquake. The recommendations gathered in Mononobe-Okabe's theory have been included in numerous Codes of Seismic Design. It is clear that a revision of these recommendations must be done. At present there is taking place an important review of the design methods of anti-seismic structures such as containment walls placed in an area of numerous earthquakes, by means of the introduction at the beginning of the decade of 1990 the Displacement Response Spectrum (DRS) and the Capacity Demand Diagram (CDD) that suppose an important change in the way of presenting the Elastic Response Spectrum (ERS). On the other hand in case of action of an earthquake, the dynamic characteristics of a soil have been referred traditionally to the speed of the shear waves that can be generated in a site, together with the characteristics of plasticity and damping of the soil. The Principle of the energy conservation explains why a shear upward propagating seismic wave can be amplified when travelling from a medium with high shear wave velocity (rock) to other medium with lower velocity (soil deposit), as it happened in the earthquake of Mexico of 1985. This amplification is a function of the speed gradient or of the contrast of impedances in the border of both types of mediums. A method is proposed in this paper for the design of containment walls in different soils, suffering to the action of an earthquake, based on the Performance-Based Seismic Design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emergency management is one of the key aspects within the day-to-day operation procedures in a highway. Efficiency in the overall response in case of an incident is paramount in reducing the consequences of any incident. However, the approach of highway operators to the issue of incident management is still usually far from a systematic, standardized way. This paper attempts to address the issue and provide several hints on why this happens, and a proposal on how the situation could be overcome. An introduction to a performance based approach to a general system specification will be described, and then applied to a particular road emergency management task. A real testbed has been implemented to show the validity of the proposed approach. Ad-hoc sensors (one camera and one laser scanner) were efficiently deployed to acquire data, and advanced fusion techniques applied at the processing stage to reach the specific user requirements in terms of functionality, flexibility and accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emerging from the challenge to reduce energy consumption in buildings is a need for research and development into the more effective use of simulation as a decision-support tool. Despite significant research, persistent limitations in process and software inhibit the integration of energy simulation in early architectural design. This paper presents a green star case study to highlight the obstacles commonly encountered with current integration strategies. It then examines simulation-based design in the aerospace industry, which has overcome similar limitations. Finally, it proposes a design system based on this contrasting approach, coupling parametric modelling and energy simulation software for rapid and iterative performance assessment of early design options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the fire performance results of light gauge steel frame (LSF) walls lined with single and double plasterboards, and externally insulated with rock fibre insulation as obtained using a finite element analysis based parametric study. A validated numerical model was used to study the influence of various fire curves developed for a range of compartment characteristics. Data from the parametric study was utilized to develop a simplified method to predict the fire resistance ratings of LSF walls exposed to realistic design fire curves. Further, this paper also presents the details of suitable fire design rules based on current cold-formed steel standards and the modifications proposed by previous researchers. Of these the recently developed design rules by Gunalan and Mahendran [1] were investigated to determine their applicability to predict the axial compression strengths and fire resistance ratings (FRR) of LSF walls exposed to realistic design fires. Finally, the stud failure times obtained from fire design rules and finite element studies were compared for LSF walls lined with single and double plasterboards, and externally insulated with rock fibres under realistic design fire curves.