240 resultados para perforated viscus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical study has been performed in this study to investigate the turbulent convection heat transfer on a rectangular plate mounted over a flat surface. Thermal and fluid dynamic performances of extended surfaces having various types of lateral perforations with square, circular, triangular and hexagonal cross sections are investigated. RANS (Reynolds averaged Navier–Stokes) based modified k–ω turbulence model is used to calculate the fluid flow and heat transfer parameters. Numerical results are compared with the results of previously published experimental data and obtained results are in reasonable agreement. Flow and heat transfer parameters are presented for Reynolds numbers from 2000 to 5000 based on the fin thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perforated element mufflers have been known to have good acousticp erformancew, henu sedo n automotive xhausst ystemsIn. thel astd ecadea nda half, plugm ufflersc, oncentrihc oler esonators, and three-ductc losed-endp erforatede lementsh ave been studied.T he presenti nvestigation concernso pen-endedt,h ree-ducpt erforatede lementsw, hich are knownt o combineh igh acoustic transmissiolno ss with low back pressuresT. he governinge quationsh ave been solved in the frequencyd omain,u singt he recouplinga pproacha longw ith appropriatbe oundaryc onditionst,o derivet he transferm atrixa ndt hent o calculaten oiser eductiona ndt ransmissiolno ss.T he predicted noiser eductionv aluesh aveb eens hownt o corroboratew ell with experimentallyo bservedv alues. Finally,p arametrics tudiesh aveb eend onet o draw designc urvesf or suchm ufflers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fairly comprehensive computer program incorporating explicit expressions for the four-pole parameters of concentric-tube resonators, plug mufflers, and three-duct cross-flow perforated elements has been used for parametric studies. The parameters considered are hole diameter, the center-to-center distance between consecutive holes (which decides porosity), the incoming mean flow Mach number, the area expansion ratio, the number of partitions of chambers within a given overall shell length, and the relative lengths of these partitions or chambers, all normalized with respect to the exhaust pipe diameter. Transmission loss has been plotted as a function of a normalized frequency parameter. Additionally, the effect of the tail pipe length on insertion loss for an anechoic source has also been studied. These studies have been supplemented by empirical expressions for the normalized static pressure drop for different types of perforated-element mufflers developed from experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the authors’ distributed parameter approach for derivation of closed-form expressions for the four-pole parameters of the perforated three-duct muffler components. In this method, three simultaneous second-order partial differential equations are first reduced to a set of six first-order ordinary differential equations. These equations are then uncoupled by means of a modal matrix. The resulting 6 × 6 matrix is reduced to the 2 × 2 transfer matrix using the relevant boundary conditions. This is combined with transfer matrices of other elements (upstream and downstream of this perforated element) to predict muffler performance like noise reduction, which is also measured. The correlation between experimental and theoretical values of noise reduction is shown to be satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we treat some eigenvalue problems in periodically perforated domains and study the asymptotic behaviour of the eigenvalues and the eigenvectors when the number of holes in the domain increases to infinity Using the method of asymptotic expansion, we give explicit formula for the homogenized coefficients and expansion for eigenvalues and eigenvectors. If we denote by ε the size of each hole in the domain, then we obtain the following aysmptotic expansion for the eigenvalues: Dirichlet: λε = ε−2 λ + λ0 +O (ε), Stekloff: λε = ελ1 +O (ε2), Neumann: λε = λ0 + ελ1 +O (ε2).Using the method of energy, we prove a theorem of convergence in each case considered here. We briefly study correctors in the case of Neumann eigenvalue problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of detonations and their interactions is vital for the understanding of the high-speed flow physics involved and the ultimate goal of controlling their detrimental effects. However, producing safe and repeatable detonations within the laboratory can be quite challenging, leading to the use of computational studies which ultimately require experimental data for their validation. The objective of this study is to examine the induced flow field from the interaction of a shock front and accompanying products of combustion, produced from the detonation taking place within a non-electrical tube lined with explosive material, with porous plates with varying porosities, 0.7-9.7%. State of the art high-speed schlieren photography alongside high-resolution pressure measurements is used to visualise the induced flow field and examine the attenuation effects which occur at different porosities. The detonation tube is placed at different distances from the plates' surface, 0-30 mm, and the pressure at the rear of the plate is recorded and compared. The results indicate that depending on the level of porosity and the Mach number of the precursor shock front secondary reflected and transmitted shock waves are formed through the coalescence of compression waves. With reduced porosity, the plates act almost as a solid surface, therefore the shock propagates faster along its surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite flexible perforated panel set in a differently perforated rigid baffle is considered. The radiation efficiency from such a panel is derived using a 2-D wavenumber domain formulation. This generalization is later used to represent a more practical case of a perforated panel fixed in an unperforated baffle. The perforations are in the form of an array of uniformly distributed circular holes. A complex impedance model for the holes available in the literature is used. An averaged fluid particle velocity is derived using the continuity equation and the surface pressure is derived using an appropriate momentum equation. The discontinuity in the perforate impedance (due to different hole dimensions or perforation ratio) at the panel-baffle interface is carefully taken into account. It is found that there exists a `coupling' of different wavenumbers of the spatially mean fluid particle velocity field. The change in the resonance frequencies and the modeshapes of the panel due to the perforations is taken into account using the Receptance method. Analytical expressions for the radiated power and radiation efficiency are derived in an integral form and numerical results are presented. Several comparisons are made to understand the radiation efficiency curves. Since both the resistive and reactive components of the hole impedance are taken into account, the model is directly applicable to micro-perforated panels also. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Squeeze-film effects of perforated plates for small amplitude vibration are analyzed through modified Reynolds equation (MRE). The analytical analysis reckons in most important influential factors: compressibility of the air, border effects, and the resistance caused by vertical air flow passing through perforated holes. It is found that consideration of air compressibility is necessary for high operating frequency and small ratio of the plate width to the attenuation length. The analytical results presented in this paper agree with ANSYS simulation results better than that under the air incompressibility assumption. The analytical analysis can be used to estimate the squeeze-film effects causing damping and stiffness added to the system. Since the value of Reynolds number involved in this paper is low (< 1), inertial effects are neglected.