988 resultados para pepsin-like fold


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The B-box motif is the defining feature of the TRIM family of proteins, characterized by a RING finger-B-box-coiled coil tripartite fold. We have elucidated the crystal structure of B-box 2 (B2) from MuRF1, a TRIM protein that supports a wide variety of protein interactions in the sarcomere and regulates the trophic state of striated muscle tissue. MuRF1 B2 coordinates two zinc ions through a cross-brace alpha/beta-topology typical of members of the RING finger superfamily. However, it self-associates into dimers with high affinity. The dimerization pattern is mediated by the helical component of this fold and is unique among RING-like folds. This B2 reveals a long shallow groove that encircles the C-terminal metal binding site ZnII and appears as the defining protein-protein interaction feature of this domain. A cluster of conserved hydrophobic residues in this groove and, in particular, a highly conserved aromatic residue (Y133 in MuRF1 B2) is likely to be central to this role. We expect these findings to aid the future exploration of the cellular function and therapeutic potential of MuRF1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (R(free)=21.2%) at 1.70 angstrom resolution and 15.81% (R(free) = 19.2%) at 1.85 angstrom resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly beta-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metallophosphoesterase-domain-containing protein 2 (MPPED2) is a highly evolutionarily conserved protein with orthologs found from worms to humans. The human MPPED2 gene is found in a region of chromosome 11 that is deleted in patients with WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome, and MPPED2 may function as a tumor suppressor. However, the precise cellular roles of MPPED2 are unknown, and its low phosphodiesterase activity suggests that substrate hydrolysis may not be its prime function. We present here the structures of MPPED2 and two mutants, which show that the poor activity of MPPED2 is not only a consequence of the substitution of an active-site histidine residue by glycine but also due to binding of AMP or GMP to the active site. This feature, enhanced by structural elements of the protein, allows MPPED2 to utilize the conserved phosphoprotein-phosphatase-like fold in a unique manner, ensuring that its enzymatic activity can be combined with a possible role as a scaffolding or adaptor protein. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An 18.2 kDa protein from the liver fluke, Fasciola hepatica has been identified and characterised. The protein shows strongest sequence similarity to egg antigen proteins from Schistosoma mansoni, Schistosoma japonicum and Clonorchis sinensis. The protein is predicted to adopt a calmodulin-like fold; it thus represents the third calmodulin-like protein to be characterised in F. hepatica and has been named FhCaM3. Compared to the classical calmodulin structure there are some variations. Most noticeably, the central, linker helix is disrupted by a cysteine residue. Alkaline native gel electrophoresis showed that FhCaM3 binds calcium ions. This binding event increases the ability of the protein to bind the hydrophobic fluorescent probe 8-anilinonaphthalene-1-sulphonate, consistent with an increase in surface hydrophobicity as seen in other calmodulins. FhCaM3 binds to the calmodulin antagonists trifluoperazine and W7, but not to the myosin regulatory light chain binding compound praziquantel. Immunolocalisation demonstrated that the protein is found in eggs and vitelline cells. Given the critical role of calcium ions in egg formation and hatching this suggests that FhCaM3 may play a role in calcium signalling in these processes. Consequently the antagonism of FhCaM3 may, potentially, offer a method for inhibiting egg production and thus reducing the spread of infection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chaperone/usher pathway controls assembly of fibres of adhesive organelles of Gram-negative bacteria. The final steps of fibre assembly and fibre translocation to the cell surface are co-ordinated by the outer membrane proteins, ushers. Ushers consist of several soluble periplasmic domains and a single transmembrane beta-barrel. Here we report isolation and structural/functional characterization of a novel middle domain of the Caf1A usher from Yersinia pestis. The isolated UMD (usher middle domain) is a highly soluble monomeric protein capable of autonomous folding. A 2.8 angstrom (1 angstrom = 0.1 nm) resolution crystal structure of UMD revealed that this domain has an immunoglobulin-like fold similar to that of donor-strand-complemented Caf1 fibre subunit. Moreover, these proteins displayed significant structural similarity. Although UMD is in the middle of the predicted amphipathic beta-barrel of Caf1A, the usher still assembled in the membrane in the absence of this domain. UMD did not bind Caf1M-Caf1 complexes, but its presence was shown to be essential for Caf1 fibre secretion. The study suggests that UMD may play the role of a subunit-substituting protein (dummy subunit), plugging or priming secretion through the channel in the Caf1A usher. Comparison of isolated UMD with the recent strcture of the corresponding domain of PapC usher revealed high similarity of the core structures, suggesting a universal structural adaptation of FGL (F(1)G(1) long) and FGS (F(1)G(1) short) chaperone/usher pathways for the secretion of different types of fibres. The functional role of two topologically different states of this plug domain suggested by structural and biochemical results is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Insulin-like peptide 3 (INSL3), a member of the relaxin peptide family, is produced in testicular Leydig cells and ovarian thecal cells. Gene knock-out experiments have identified a key biological role in initiating testes descent during fetal development. Additionally, INSL3 has an important function in mediating male and female germ cell function. These actions are elicited via its recently identified receptor, LGR8, a member of the leucine-rich repeat-containing G-protein- coupled receptor family. To identify the structural features that are responsible for the interaction of INSL3 with its receptor, its solution structure was determined by NMR spectroscopy together with in vitro assays of a series of B-chain alanine-substituted analogs. Synthetic human INSL3 was found to adopt a characteristic relaxin/ insulin-like fold in solution but is a highly dynamic molecule. The four termini of this two-chain peptide are disordered, and additional conformational exchange is evident in the molecular core. Alanine-substituted analogs were used to identify the key residues of INSL3 that are responsible for the interaction with the ectodomain of LGR8. These include Arg(B16) and Val(B19), with His(B12) and Arg(B20) playing a secondary role, as evident from the synergistic effect on the activity in double and triple mutants involving these residues. Together, these amino acids combine with the previously identified critical residue, Trp(B27), to form the receptor binding surface. The current results provide clear direction for the design of novel specific agonists and antagonists of this receptor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used in vivo (biological), in silico (computational structure prediction), and in vitro (model sequence folding) analyses of single-stranded DNA sequences to show that nucleic acid folding conservation is the selective principle behind a high-frequency single-nucleotide reversion observed in a three-nucleotide mutated motif of the Maize streak virus replication associated protein (Rep) gene. In silico and in vitro studies showed that the three-nucleotide mutation adversely affected Rep nucleic acid folding, and that the single-nucleotide reversion [C(601)A] restored wild-type-like folding. In vivo support came from infecting maize with mutant viruses: those with Rep genes containing nucleotide changes predicted to restore a wild-type-like fold [A(601)/G(601)] preferentially accumulated over those predicted to fold differently [C(601)/T(601)], which frequently reverted to A(601) and displaced the original population. We propose that the selection of native nucleic acid folding is an epigenetic effect, which might have broad implications in the evolution of plants and their viruses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genomes of many positive stranded RNA viruses and of all retroviruses are translated as large polyproteins which are proteolytically processed by cellular and viral proteases. Viral proteases are structurally related to two families of cellular proteases, the pepsin-like and trypsin-like proteases. This thesis describes the proteolytic processing of several nonstructural proteins of dengue 2 virus, a representative member of the Flaviviridae, and describes methods for transcribing full-length genomic RNA of dengue 2 virus. Chapter 1 describes the in vitro processing of the nonstructural proteins NS2A, NS2B and NS3. Chapter 2 describes a system that allows identification of residues within the protease that are directly or indirectly involved with substrate recognition. Chapter 3 describes methods to produce genome length dengue 2 RNA from cDNA templates.

The nonstructural protein NS3 is structurally related to viral trypsinlike proteases from the alpha-, picorna-, poty-, and pestiviruses. The hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins was tested using an efficient in vitro expression system and antisera specific for the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed using T7 RNA polymerase and the RNA translated in reticulocyte lysates. Proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain necessary and sufficient for correct cleavage to the first 184 amino acids of NS3. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.

Biochemical and genetic experiments using viral proteinases have defined the sequence requirements for cleavage site recognition, but have not identified residues within proteinases that interact with substrates. A biochemical assay was developed that could identify residues which were important for substrate recognition. Chimeric proteases between yellow fever and dengue 2 were constructed that allowed mapping of regions involved in substrate recognition, and site directed mutagenesis was used to modulate processing efficiency.

Expression in vitro revealed that the dengue protease domain efficiently processes the yellow fever polyprotein between NS2A and NS2B and between NS2B and NS3, but that the reciprocal construct is inactive. The dengue protease processes yellow fever cleavage sites more efficiently than dengue cleavage sites, suggesting that suboptimal cleavage efficiency may be used to increase levels of processing intermediates in vivo. By mutagenizing the putative substrate binding pocket it was possible to change the substrate specificity of the yellow fever protease; changing a minimum of three amino acids in the yellow fever protease enabled it to recognize dengue cleavage sites. This system allows identification of residues which are directly or indirectly involved with enzyme-substrate interaction, does not require a crystal structure, and can define the substrate preferences of individual members of a viral proteinase family.

Full-length cDNA clones, from which infectious RNA can be transcribed, have been developed for a number of positive strand RNA viruses, including the flavivirus type virus, yellow fever. The technology necessary to transcribe genomic RNA of dengue 2 virus was developed in order to better understand the molecular biology of the dengue subgroup. A 5' structural region clone was engineered to transcribe authentic dengue RNA that contains an additional 1 or 2 residues at the 5' end. A 3' nonstructural region clone was engineered to allow production of run off transcripts, and to allow directional ligation with the 5' structural region clone. In vitro ligation and transcription produces full-length genomic RNA which is noninfectious when transfected into mammalian tissue culture cells. Alternative methods for constructing cDNA clones and recovering live dengue virus are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

绿色植物的光合作用是地球上唯一大规模地把无机物转变为有机物,把光能转变为化学能的过程。叶绿体是植物进行光合作用的场所。因而,高等植物叶绿体发育与叶绿体功能维持的研究一直倍受人们关注。然而,目前参与高等植物中调控叶绿体发育过程的基因克隆以及这些基因在叶绿体发育过程中的分子机制知之甚少。本论文克隆并初步探讨了2个参与调控拟南芥叶绿体发育基因AtECB1和AtECB2。AtECB1基因编码一个高等植物所特有的,具有类似硫氧还蛋白结构的叶绿体蛋白质。该基因主要在地上部分表达,尤其在14天的幼苗中表达较强,且该基因的表达是受光诱导的。该基因的敲除导致了拟南芥叶绿体中仅有少数片层结构。这些片层不能进一步形成类囊体结构。蛋白质免疫实验表明,突变体中多数光合作用蛋白质复合物的组分缺失。该基因的突变影响了质体转录,翻译和光合作用相关的基因的表达。基于这些结果我们推测,AtECB1可能是叶绿体发育过程中所必需的。而AtECB2基因则编码一个PPR家族的叶绿体蛋白质。该蛋白质具有11个PPR基序;此外,该蛋白质含有E/E+和DYW结构域。因而,AtECB2属于PPR家族中的DYW群。AtECB2敲除突变体表现为白化表型,该突变体中的叶绿体没有正常的类囊体结构,仅存在少量的膜结构。与电镜的结果相一致,蛋白质免疫实验表明突变体中多数光合作用蛋白质复合物的组分缺失。定量RT-PCR结果表明,AtECB2的缺失影响了叶绿体基因的表达。另外,我们对该突变体中的已经报道的34个RNA编辑位点分析发现其中的一个位点accD没有发生编辑。AccD编码异质型乙酰辅酶A羧化酶的羧基转移酶β亚基。而前人的实验表明,该位点的RNA编辑为其所编码的蛋白质活性所必需,且accD的缺失直接影响到植物叶绿体的发育。综合这些数据和本论文的结果表明,AtECB2是质体转录本accD的RNA编辑所必需的特异因子;accD RNA编辑的缺陷可能导致了叶绿体发育的缺陷。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new genus and two new species are described from the Pearl River drainage in Guangxi Province, South China. Hongshuia, new genus, can be distinguished from all other Asian genera of the Labeonini by having a lower lip with its median lobe modified into a round, fleshy plate peripherally greatly protruded so as to form a ring-like fold that is posteromedially continuous with the mental region, and centrally sunken so as to form a round, flat, fleshy pad. This genus is distinct from all other Asian labeonine genera of the Garrina except for one newly described species of Parasinilabeo ( P. longibarbus), Pseudocrossocheilus, and Sinocrossocheilus, in the presence of well-developed maxillary barbels. Hongshuia differs from the above three genera in the lower lip morphology, and further from both Pseudocrossocheilus and Qianlabeo in the number of pharyngeal tooth rows and from Sinocrossocheilus in the colour pattern. Two new species, H. banmo and H. paoli, differ in the distribution density and degree of development of papillae on the rostral fold, depth of indentations on the distal edge of the rostral fold, presence or absence of papillae on the lower lip, size and shape of tubercles on the tip of the snout and anterior portion of the lachrymal, length, position and colour pattern of the dorsal fin, and snout length.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

DNA telomeric repeats in mammalian cells are transcribed to guanine-rich RNA sequences, which adopt parallel-stranded G-quadruplexes with a propeller-like fold. The successful crystallization and structure analysis of a bimolecular human telomeric RNA G-quadruplex, folded into the same crystalline environment as an equivalent DNA oligonucleotide sequence, is reported here. The structural basis of the increased stability of RNA telomeric quadruplexes over DNA ones and their preference for parallel topologies is described here. Our findings suggest that the 2'-OH hydroxyl groups in the RNA quadruplex play a significant role in redefining hydration structure in the grooves and the hydrogen bonding networks. The preference for specific nucleotides to populate the C3'-endo sugar pucker domain is accommodated by alterations in the phosphate backbone, which leads to greater stability through enhanced hydrogen bonding networks. Molecular dynamics simulations on the DNA and RNA quadruplexes are consistent with these findings. The computations, based on the native crystal structure, provide an explanation for RNA G-quadruplex ligand binding selectivity for a group of naphthalene diimide ligands as compared to the DNA G-quadruplex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The major digestive enzyme activities and digestive indices were compared between Etroplus suratensis and Oreochromis mossambicus. Pepsin - like acid proteases that acts on low pH has been identified all along the digestive tract of both the fishes. Comparatively low alpha amylase activity is shown by the E. suratensis and the enzyme is distributed almost equally throughout the intestinal segments in both the species. Very low alkaline protease activity is found in the stomach of both the fishes and in O. mossambicus, the enzyme activity diminishes extensively towards the posterior portion of the intestine whereas in E. suratensis the activity increases towards the posterior part. The present study showed that lipase is one of the prominent digestive enzymes in O. mossambicus with a remarkable specific activity throughout the digestive tract than that of E. suratensis .It has been noted that O. mossambicus has a higher values for digestive somatic index, hepato somatic index, intestinal coefficient and gut Vs standard length ratio than that of E. suratensis indicating its higher digestive and metabolic capabilities. The early maturity and fast growth of O. mossambicus can be explained by their enhanced digestive indices. The compa ratively low activities of acid protease, amylase, lipase and total alkaline protease of E. suratensis revealed poor digestive capacity than that of O. mossambicus

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonstructural protein 3 of the severe acute respiratory syndrome (SARS) coronavirus includes a "SARS-unique domain" (SUD) consisting of three globular domains separated by short linker peptide segments. This work reports NMR structure determinations of the C-terminal domain (SUD-C) and a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-domain construct. Both SUD-N and SUD-NM are monomeric and globular in solution; in SUD-NM, there is high mobility in the two-residue interdomain linking sequence, with no preferred relative orientation of the two domains. SUD-C adopts a frataxin like fold and has structural similarity to DNA-binding domains of DNA-modifying enzymes. The structures of both SUD-M (previously determined) and SUD-C (from the present study) are maintained in SUD-MC, where the two domains are flexibly linked. Gel-shift experiments showed that both SUD-C and SUD-MC bind to single-stranded RNA and recognize purine bases more strongly than pyrimidine bases, whereby SUD-MC binds to a more restricted set of purine-containing RNA sequences than SUD-M. NMR chemical shift perturbation experiments with observations of (15)N-labeled proteins further resulted in delineation of RNA binding sites (i.e., in SUD-M, a positively charged surface area with a pronounced cavity, and in SUD-C, several residues of an anti-parallel beta-sheet). Overall, the present data provide evidence for molecular mechanisms involving the concerted actions of SUD-M and SUD-C, which result in specific RNA binding that might be unique to the SUD and, thus, to the SARS coronavirus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chaperone/usher pathway assembles surface virulence organelles of Gram-negative bacteria, consisting of fibers of linearly polymerized protein subunits. Fiber subunits are connected through 'donor strand complementation': each subunit completes the immunoglobulin (Ig)-like fold of the neighboring subunit by donating the seventh β-strand in trans. Whereas the folding of Ig domains is a fast first-order process, folding of Ig modules into the fiber conformation is a slow second-order process. Periplasmic chaperones separate this process in two parts by forming transient complexes with subunits. Interactions between chaperones and subunits are also based on the principle of donor strand complementation. In this study, we have performed mutagenesis of the binding motifs of the Caf1M chaperone and Caf1 capsular subunit from Yersinia pestis and analyzed the effect of the mutations on the structure, stability, and kinetics of Caf1M-Caf1 and Caf1-Caf1 interactions. The results suggest that a large hydrophobic effect combined with extensive main-chain hydrogen bonding enables Caf1M to rapidly bind an early folding intermediate of Caf1 and direct its partial folding. The switch from the Caf1M-Caf1 contact to the less hydrophobic, but considerably tighter and less dynamic Caf1-Caf1 contact occurs via the zip-out-zip-in donor strand exchange pathway with pocket 5 acting as the initiation site. Based on these findings, Caf1M was engineered to bind Caf1 faster, tighter, or both faster and tighter. To our knowledge, this is the first successful attempt to rationally design an assembly chaperone with improved chaperone function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.