86 resultados para pepsin
Resumo:
Animal by-product meals have large variability in crude protein (CP) content and digestibility. In vivo digestibility procedures are precise but laborious, and in vitro methods could be an alternative to evaluate and classify these ingredients. The present study reports prediction equations to estimate the CP digestibility of meat and bone meal (MBM) and poultry by-product meal (PM) using the protein solubility in pepsin method (PSP). Total tract CP digestibility of eight MBM and eight PM samples was determined in dogs by the substitution method. A basal diet was formulated for dog maintenance, and sixteen diets were produced by mixing 70 % of the basal diet and 30 % of each tested meal. Six dogs per diet were used to determine ingredient digestibility. In addition, PSP of the MBM and PM samples was determined using three pepsin concentrations: 0·02, 0·002 and 0·0002 %. The CP content of MBM and PM ranged from 39 to 46 % and 57 to 69 %, respectively, and their mean CP digestibility by dogs was 76 (2·4) and 85 (2·6) %, respectively. The pepsin concentration with higher Pearson correlation coefficients with the in vivo results were 0·0002 % for MBM (r 0·380; P = 0·008) and 0·02 % for PM (r 0·482; P = 0·005). The relationship between the in vivo and in vitro results was better explained by the following equations: CP digestibility of MBM = 61·7 + 0·2644 × PSP at 0·0002 % (P = 0·008; R (2) 0·126); and CP digestibility of PM = 54·1 + 0·3833 × PSP at 0·02 % (P = 0·005; R (2) 0·216). Although significant, the coefficients of determination were low, indicating that the models were weak and need to be used with caution.
Resumo:
Thesis (doctoral)--Grossherzogl. Hessische Landes- Universitat Giessen, 1905.
Resumo:
Goats are economically important in many countries, and little is known of caprine toxoplasmosis in Brazil. Anti-bodies to toxoplasma gondii were assayed in the sera of 143 goats from 3 Brazilian states, using modified agglutination test (MAT titer >= 1:25); 46 (32.2%) tested positive. Samples of brain, heart, diaphragm, and masseter of seropositive animals were pooled, digested in pepsin, and bioassayed in mice. Viable T. gondii specimens were isolated from tissue homogenates of 12 goats; the isolates were designated TgGtBr1-12. Ten of the 12 isolates killed 100% of infected mice, indicating that goats can harbor mouse-virulent T. gondii and, hence, can serve as a source of infection for humans.
Resumo:
Sheep are important in the epidemiology of Toxoplasma gondii infection, but little is known of ovine toxoplasmosis in Brazil. Antibodies to T. gondii were assayed in sera of 495 sheep from 36 countries of Sao Paulo state. Brazil, using the modified agglutination test (MAT titer >= 1:25); 120 (24.2%) sheep tested positive. Samples of brain, heart, and diaphragm of 85 seropositive sheep were pooled, digested in pepsin, and bioassayed in mice. Toxoplasma gondii was isolated from tissue homogenated of 16 sheep, and the isolated were designated TgShBr 1-16. Six of the 16 T. gondii isolated killed 100% of infected mice. Results indicate that asymptomatic sheep can harbour mouse-virulent T. gondii; hence, they can serve as a source of infection for humans.
Resumo:
Several peptides sharing high sequence homology with lactoferricin B (Lf-cin B) were generated from bovine lactoferrin (Lf) with recombinant chymosin. Two peptides were copurified. one identical to Lf-cin B and another differing from Lf-cin B by the inclusion of a C-terminal alanine (lactoferricin). Two other peptides were copurified from chymosin-hydrolyzed Lf. one differing from Lf-cin B by the inclusion of C-terminal alanyl-leucine and the other being a heterodimer linked by a disulfide bond, These peptides were isolated in a single step from chymosin-hydrolyzed Lf by membrane ton-exchange chromatography and were purified by reverse-phase high-pressure liquid chromatography (HPLC), They were characterized by. N-terminal Edman sequencing, mass spectrometry, and antibacterial activity determination, Pure lactoferricin, prepared from pepsin-hydrolyzed Lf, was purified by standard chromatography techniques, This peptide was analyzed against a number of gram-positive and gram-negative bacteria before and after reduction of its disulfide bond or cleavage after its single methionine residue and was found to inhibit the growth of all the test bacteria at a concentration of 8 mu M or less, Subfragments of lactoferricin were isolated from reduced and cleaved peptide by reverse-phase HPLC, Subfragment 1 (residues I to 10) was active against most of the test microorganisms at concentrations of 10 to 50 mu M. Subfragment 2 (residues 11 to 26) was active against only a few microorganisms at concentrations up to 100 mu M. These antibacterial studies indicate that the activity of lactoferricin Is mainly, but not wholly, due to its N-terminal region.
Resumo:
The methanol extract of Leptospira interrogans serovar canicola was purified by precipitation with acetone or acetone and chloroform. The antigenicity of the antigen was not altered by heating or treatment with pepsin and pronase. However the antigenicity was lost when the antigen was treated with periodic acid. Chemical analysis revealed the presence of 40% carbohydrate (22% methylpentose, 28%; hexoses),4% protein, 20% lipid and 2,7% phosphate. The complement fixation test with sera from patients with leptospirosis agreed with the microscopic agglutination reaction.
Resumo:
Reduction of complement activation through an alteration of the Fc fragment of immunoglobulins by b-propiolactone treatment was carried out in equine antisera raised against rabies virus, Bothrops venoms and diphtherial toxin. Results were evaluated by means of an anaphylactic test performed on guinea-pigs, and compared to the ones obtained with the same sera purified by saline precipitation (ammonium sulfate), followed or not by enzymatic digestion with pepsin. Protein purity levels for antibothropic serum were 184.5 mg/g and 488.5 mg/g in b-propiolactone treated and pepsin-digested sera, respectively. The recovery of specific activity was 100% and 62.5% when using antibothropic serum treated by b-propiolactone and pepsin digestion, respectively. The antidiphtherial and anti-rabies sera treated with b-propiolactone and pepsin presented protein purity levels of 5,698 and 7,179 Lf/g, 16,233 and 6,784 IU/g, respectively. The recovery of specific activity for these antisera were 88.8%, 77.7%, 100% and 36,5%, respectively. b-propiolactone treatment induced a reduction in complement activation, tested "in vivo", without significant loss of biological activity. This treatment can be used in the preparation of heterologous immunoglobulins for human use.
Resumo:
Dissertação Apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Ciências da Conservação, especialização em Pintura
Resumo:
Doctoral Thesis (PhD Programm on Molecular and Environmental Biology)
Resumo:
Ontogenetic changes in digestive capabilities were analyzed in larvae and first juveniles of the spider crab Maja brachydactyla. Activities of five proteinases (total proteases, trypsin, chymotrypsin, pepsin-like and aminopeptidase), three carbohydrases (amylase, maltase and chitinase), an esterase and an alkaline phosphatase were studied to evaluate digestive enzyme profiles of the species. Both quantitative (spectrophotometry and fluorometry) and qualitative (SDS-PAGE) approaches were used. All assayed enzymes were active from hatching (zoea I-ZI) throughout larval development and in first juveniles. Significant variations during ontogeny were found only in total activities likely as a consequence of digestive system development. Specific activity varied little over ontogeny, being significant only for chitinase. Total proteases, trypsin and pepsin-like activities showed a similar pattern of increase as larval ontogeny advanced, decreasing significantly in juveniles. Chymotrypsin continued to increase, showing maximum activity after metamorphosis. Proteinase zymograms confirmed strong proteolytic activity in first zoeas, with increasing bands over the course of ontogeny, decreasing after metamorphosis. A group of bands with high molecular mass was specific to larval stages. Amylase and maltase showed a parallel pattern of continuous increase of total activity as development advanced. Gel-SDS-PAGE showed unchanged patterns of amylase activity in first zoeas of different ages and the most complex set of bands during larval ontogeny in second zoea. Esterase total activity increased significantly as ZI's aged likely reflecting introduction of a lipid-enriched diet. The importance of lipid accumulation at the beginning of ontogeny was also confirmed by the protease/esterase and amylase/esterase activity ratios, which decreased from hatch to late ZI and might be explained as an adaptation, ensuring the next molt. The results suggest that larvae of M. brachydactyla are capable of digesting a variety of dietary substrates as soon as they hatch.
Resumo:
Gastric lipase (HGL) contributes significantly to fat digestion. However, little is known about its neurohormonal regulation in humans. We studied the role of CCK and cholinergic mechanisms in the postprandial regulation of HGL and pancreatic lipase (HPL) secretion in six healthy subjects. Gastric emptying of a mixed meal and outputs of HGL, pepsin, acid, and HPL were determined with a double-indicator technique. Three experiments were performed in random order: intravenous infusion of 1) placebo, 2) low-dose atropine (5 micrograms.kg-.h-1), and 3) the CCK-A receptor antagonist loxiglumide (22 mumol.kg-.h-1). Atropine decreased postprandial outputs of HGL, pepsin, gastric acid, and HPL (P < 0.03) while slowing gastric emptying (P < 0.05). Loxiglumide markedly increased the secretion of HGL, pepsin, and acid while distinctly reducing HPL outputs and accelerating gastric emptying (P < 0.03). Plasma CCK and gastrin levels increased during loxiglumide infusion (P < 0.03). Atropine enhanced gastrin but not CCK release. Postprandial HGL, pepsin, and acid secretion are under positive cholinergic but negative CCK control, whereas HPL is stimulated by cholinergic and CCK mechanisms. We conclude that CCK and cholinergic mechanisms have an important role in the coordination of HGL and HPL secretion to optimize digestion of dietary lipids in humans.
Resumo:
Frequent reports on outbreaks of acute Chagas' disease by ingestion of food contaminated with parasites from triatomine insects illustrate the importance of this mode of transmission. Studies on oral Trypanosoma cruzi infection in mice have indicated that metacyclic trypomastigotes invade the gastric mucosal epithelium. A key molecule in this process is gp82, a stage-specific surface glycoprotein that binds to both gastric mucin and to target epithelial cells. By triggering Ca2+ signalling, gp82 promotes parasite internalisation. Gp82 is relatively resistant to peptic digestion at acidic pH, thus preserving the properties critical for oral infection. The infection process is also influenced by gp90, a metacyclic stage-specific molecule that negatively regulates the invasion process. T. cruzi strains expressing high gp90 levels invade cells poorly in vitro. However, their infectivity by oral route varies considerably due to varying susceptibilities of different gp90 isoforms to peptic digestion. Parasites expressing pepsin-susceptible gp90 become highly invasive against target cells upon contact with gastric juice. Such is the case of a T. cruzi isolate from an acute case of orally acquired Chagas' disease; the gp90 from this strain is extensively degraded upon short period of parasite permanence in the gastric milieu. If such an exacerbation of infectivity occurs in humans, it may be responsible for the severity of Chagas' disease reported in outbreaks of oral infection.
Resumo:
Mouse-human chimeric monoclonal antibodies (MAbs) of 3 different human IgG sub-classes directed against carcinoembryonic antigen (CEA) have been produced in SP-0 cells transfected with genomic chimeric DNA. F(ab')2 fragments were obtained by pepsin digestion of the purified chimeric MAbs of human IgG1, IgG2 and IgG4 sub-class and of parental mouse MAb IgG1. The 4 F(ab')2 fragments exhibit similar molecular weight by SDS-PAGE. They were labelled with 125I or 131I and high binding (80 to 87%) to purified unsolubilized CEA was observed. In vivo, double labelling experiments indicate that the longest biological half-life and the highest tumour-localization capacity is obtained with F(ab')2 from chimeric MAb of human IgG2 sub-class, whereas F(ab')2 from chimeric MAb IgG4 give very low values for these 2 parameters. F(ab')2 from chimeric MAb IgG1 and from parental mouse MAb yield intermediate results in vivo. Our findings should help to select the appropriate human IgG sub-class to produce chimeric or reshaped MAb F(ab')2 to be used for tumour detection by immunoscintigraphy and for radioimmunotherapy.
Resumo:
Aspergillus fumigatus grows well at neutral and acidic pH in a medium containing protein as the sole nitrogen source by secreting two different sets of proteases. Neutral pH favors the secretion of neutral and alkaline endoproteases, leucine aminopeptidases (Laps) which are nonspecific monoaminopeptidases, and an X-prolyl dipeptidase (DppIV). Acidic pH environment promotes the secretion of an aspartic endoprotease of pepsin family (Pep1) and tripeptidyl-peptidases of the sedolisin family (SedB and SedD). A novel prolyl peptidase, AfuS28, was found to be secreted in both alkaline and acidic conditions. In previous studies, Laps were shown to degrade peptides from their N-terminus until an X-Pro sequence acts as a stop signal. X-Pro sequences can be then removed by DppIV, which allows Laps access to the following residues. We have shown that at acidic pH Seds degrade large peptides from their N-terminus into tripeptides until Pro in P1 or P'1 position acts as a stop for these exopeptidases. However, X-X-Pro and X-X-X-Pro sequences can be removed by AfuS28 thus allowing Seds further sequential proteolysis. In conclusion, both alkaline and acidic sets of proteases contain exoprotease activity capable of cleaving after proline residues that cannot be removed during sequential digestion by nonspecific exopeptidases.