50 resultados para pedogenesis
Resumo:
The genesis of ferruginous nodules and pisoliths in soils and weathering profiles of coastal southern and eastern Australia has long been debated. It is not clear whether iron (Fe) nodules are redox accumulations, residues of Miocene laterite duricrust, or the products of contemporary weathering of Fe-rich sedimentary rocks. This study combines a catchment-wide survey of Fe nodule distribution in Poona Creek catchment (Fraser Coast, Queensland) with detailed investigations of a representative ferric soil profile to show that Fe nodules are derived from Fe-rich sandstones. Where these crop out, they are broken down, transported downslope by colluvial processes, and redeposited. Chemical and physical weathering transforms these eroded rock fragments into non-magnetic Fe nodules. Major features of this transformation include lower hematite/goethite and kaolinite/gibbsite ratios, increased porosity, etching of quartz grains, and development of rounded morphology and a smooth outer cortex. Iron nodules are commonly concentrated in ferric horizons. We show that these horizons form as the result of differential biological mixing of the soil. Bioturbation gradually buries nodules and rock fragments deposited at the surface of the soil, resulting in a largely nodule-free 'biomantle' over a ferric 'stone line'. Maghemite-rich magnetic nodules are a prominent feature of the upper half of the profile. These are most likely formed by the thermal alteration of non-magnetic nodules located at the top of the profile during severe bushfires. They are subsequently redistributed through the soil profile by bioturbation. Iron nodules occurring in the study area are products of contemporary weathering of Fe-rich rock units. They are not laterite duricrust residues nor are they redox accumulations, although redox-controlled dissolution/re-precipitation is an important component of post-depositional modification of these Fe nodules.
HIRM variation in the Chinese red-clay sequences: insights into pedogenesis in the dust source area.
Resumo:
[1] Four well-identified tropical cyclones over the past century have been responsible for depositing distinct units of predominantly quartzose sand and gravel to form the most seaward beach ridge at several locations along the wet tropical coast of northeast Queensland, Australia. These units deposited by tropical cyclones display a key sedimentary signature characterized by a sharp basal erosional contact, a coarser grain size than the underlying facies and a coarse-skewed trend toward the base. Coarse-skewed distributions with minimal change in mean grain size also characterize the upper levels of the high-energy deposited units at locations within the zone of maximum onshore winds during the tropical cyclone. These same coarse skew distributions are not apparent in sediments deposited at locations where predominantly offshore winds occurred during the cyclone, which in the case of northeast Australia is north of the eye-crossing location. These sedimentary signatures, along with the geochemical indicators and the degraded nature of the microfossil assemblages, have proven to be useful proxies to identify storm-deposited units within the study site and can also provide useful proxies in older beach ridges where advanced pedogenesis has obscured visual stratigraphic markers. As a consequence, more detailed long-term histories of storms and tropical cyclones can now be developed.
Resumo:
The physical properties of surface soil horizons, essentially pore size, shape, continuity and affinity for water, regulate water entry into the soil. These properties are prone to changes caused by natural forces and human activity. The hydraulic properties of the surface soil greatly impact the generation of surface runoff and accompanied erosion, the major concern of agricultural water protection. The general target of this thesis was to improve our understanding of the structural and hydraulic properties of boreal clay soils. Physical properties of a clayey surface soil (0 - 10 cm, clay content 51%), with a micaceous/illitic mineralogy subjected to three different management practices of perennial vegetation, were studied. The study sites were vegetated buffer zones located side by side in SW Finland: 1) natural vegetation with no management, 2) harvested once a year, and 3) grazed by cattle. The soil structure, hydraulic properties, shrinkage properties and soil water repellency were determined at all sites. Two distinct flow domains were evident. The surface soil was characterized by subangular blocky, angular blocky and platy aggregates. Hence, large, partially accommodated, irregular elongated pores dominated the macropore domain at all sites. The intra-aggregate pore system was mostly comprised of pores smaller than 30 μm, which are responsible for water storage. Macropores at the grazed site, compacted by hoof pressure, were horizontally oriented and pore connectivity was poorest, which decreased water and air flux compared with other sites. Drying of the soil greatly altered its structure. The decrease in soil volume between wet and dry soil was 7 - 10%, most of which occurred in the moisture range of field conditions. Structural changes, including irreversible collapse of interaggregate pores, began at matric potentials around -6 kPa indicating, instability of soil structure against increasing hydraulic stress. Water saturation and several freezethaw cycles between autumn and spring likely weakened the soil structure. Soil water repellency was observed at all sites at the time of sampling and when soil was dryer than about 40 vol.%. (matric potential < -6 kPa). Therefore, water repellency contributes to water flow over a wide moisture range. Water repellency was also observed in soils with low organic carbon content (< 2%), which suggests that this phenomenon is common in agricultural soils of Finland due to their relatively high organic carbon content. Aggregate-related pedofeatures of dense infillings described as clay intrusions were found at all sites. The formation of these intrusions was attributed to clay dispersion and/or translocation during spring thaw and drying of the suspension in situ. These processes generate very new aggregates whose physical properties are most probably different from those of the bulk soil aggregates. Formation of the clay infillings suggested that prolonged wetness in autumn and spring impairs soil structure due to clay dispersion, while on the other hand it contributes to the pedogenesis of the soil. The results emphasize the dynamic nature of the physical properties of clay soils, essentially driven by their moisture state. In a dry soil, fast preferential flow is favoured by abundant macropores including shrinkage cracks and is further enhanced by water repellency. Increase in soil moisture reduces water repellency, and swelling of accommodated pores lowers the saturated hydraulic conductivity. Moisture- and temperature-related processes significantly alter soil structure over a time span of 1 yr. Thus, the pore characteristics as well as the hydraulic properties of soil are time-dependent.
Resumo:
Detailed pedofacies characterization along-with lithofacies investigations of the Mio-Pleistocene Siwalik sediments exposed in the Ramnagar sub-basin have been studied so as to elucidate variability in time and space of fluvial processes and the role of intra- and extra-basinal controls on fluvial sedimentation during the evolution of the Himalayan foreland basin (HFB). Dominance of multiple, moderately to strongly developed palaeosol assemblages during deposition of Lower Siwalik (similar to 12-10.8 Ma) sediments suggest that the HFB was marked by Upland set-up of Thomas et al. (2002). Activity of intra-basinal faults on the uplands and deposition of terminal fans at different times caused the development of multiple soils. Further, detailed pedofacies along-with lithofacies studies indicate prevalence of stable tectonic conditions and development of meandering streams with broad floodplains. However, the Middle Siwalik (similar to 10.8-4.92 Ma) sub-group is marked by multistoried sandstones and minor mudstone and mainly weakly developed palaeosols, indicating deposition by large braided rivers in the form of megafans in a Lowland set-up of Thomas et al. (2002). Significant change in nature and size of rivers from the Lower to Middle Siwalik at similar to 10 Ma is found almost throughout of the basin from Kohat Plateau (Pakistan) to Nepal because the Himalayan orogeny witnessed its greatest tectonic upheaval at this time leading to attainment of great heights by the Himalaya, intensification of the monsoon, development of large rivers systems and a high rate of sedimentation, hereby a major change from the Upland set-up to the Lowland set-up over major parts of the HFB. An interesting geomorphic environmental set-up prevailed in the Ramnagar sub-basin during deposition of the studied Upper Siwalik (similar to 4.92 to <1.68 Ma) sediments as observed from the degree of pedogenesis and the type of palaeosols. In general, the Upper Siwalik sub-group in the Ramnagar sub-basin is subdivided from bottom to top into the Purmandal sandstone (4.92-4.49 Ma), Nagrota (4.49-1.68 Ma) and Boulder Conglomerate (<1.68 Ma) formations on the basis of sedimentological characters and change in dominant lithology. Presence of mudstone, a few thin gravel beds and dominant sandstone lithology with weakly to moderately developed palaeosols in the Purmandal sandstone Fm. indicates deposition by shallow braided fluvial streams. The deposition of mudstone dominant Nagrota Fm. with moderately to some well developed palaeosols and a zone of gleyed palaeosols with laminated mudstones and thin sandstones took place in an environment marked by numerous small lakes, water-logged regions and small streams in an environment just south of the Piedmont zone, perhaps similar to what is happening presently in the Upland region/the Upper Gangetic plain. This area is locally called the `Trai region' (Pascoe, 1964). Deposition of Boulder Conglomerate Fm. took place by gravelly braided river system close to the Himalayan Ranges. Activity along the Main Boundary Fault led to progradation of these environments distal-ward and led to development of on the whole a coarsening upward sequence. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The Grove Mountains, including 64 nunataks, is situated on an area about 3200km2 in the inland ice cap of east Antarctica in Princess Elizabeth land (72o20'-73°101S, 73°50'-75o40'E), between Zhongshan station and Dome A, about 450km away from Zhongshan station (69°22'S, 76°22'E). Many workers thought there was no pedogenesis in the areas because of the less precipitation and extreme lower temperature. However, during the austral summer in 1999-2000, the Chinaer 16 Antarctic expedition teams entered the inland East Antarctica and found three soil spots in the Southern Mount Harding, Grove Mountains, East Antarctica. It is the first case that soils are discovered in the inland in East Antarctica. Interestingly, the soils in this area show clay fraction migration, which is different from other cold desert soils. In addition, several moraine banks are discovered around the Mount Harding. The soil properties are discussed as below. Desert pavement commonly occurs on the three soil site surfaces, which is composed of pebbles and fragments formed slowly in typical desert zone. Many pebbles are subround and variegated. These pebbles are formed by abrasion caused by not only wind and wind selective transportation, but also salt weathering and thaw-freezing action on rocks. The wind blows the boulders and bedrocks with snow grains and small sands. This results in rock disintegration, paved on the soil surface, forming desert pavement, which protects the underground soil from wind-blow. The desert pavement is the typical feature in ice free zone in Antarctica. There developed desert varnish and ventifacts in this area. Rubification is a dominant process in cold desert Antarctic soils. In cold desert soils, rubification results in relatively high concentrations of Fed in soil profile. Stained depth increases progressively with time. The content of Fed is increasing up to surface in each profile. The reddish thin film is observed around the margin of mafic minerals such as biotite, hornblende, and magnetite in parent materials with the microscope analyzing on some soil profiles. So the Fed originates from the weathering of mafic minerals in soils. Accumulations of water-soluble salts, either as discrete horizons or dispersed within the soil, occur in the soil profiles, and the salt encrustations accumulate just beneath surface stones in this area. The results of X-ray diffraction analyses show that the crystalline salts consist of pentahydrite (MgSO4-5H2O), hexahydrite (MgSO4-6H2O), hurlbutite (CaBe2(PO4)2), bloedite (Na2Mg(S04)2-4H2O), et al., being mainly sulfate. The dominant cations in 1:5 soil-water extracts are Mg2+ and Na+, as well as Ca2+ and K+, while the dominant anion is SO42-, then NO3-, Cl- and HCO3-. There are white and yellowish sponge materials covered the stone underside surface, of which the main compounds are quartz (SiO2, 40.75%), rozenite (FeSOKkO, 37.39%), guyanaite (Cr2O3-1.5H2O, 9.30%), and starkeyite (MgSO4-4H2O, 12.56%). 4) The distribution of the clay fraction is related to the maximum content of moisture and salts. Clay fraction migration occurs in the soils, which is different from that of other cold desert soils. X-ray diffraction analyses show that the main clay minerals are illite, smectite, then illite-smectite, little kaolinite and veirniculite. Mica was changed to illite, even to vermiculite by hydration. Illite formed in the initial stage of weathering. The appearance of smectite suggests that it enriched in magnesium, but no strong eluviation, which belongs to cold and arid acid environment. 5) Three soil sites have different moisture. The effect moisture is in the form of little ice in site 1. There is no ice in site 2, and ice-cement horizon is 12 cm below the soil surface in site 3. Salt horizon is 5-10 cm up to the surface in Site 1 and Site 2, while about 26cm in site 3. The differentiation of the active layer and the permafrost are not distinct because of arid climate. The depth of active layer is about 10 cm in this area. Soils and Environment: On the basis of the characteristics of surface rocks, soil colors, horizon differentiation, salt in soils and soil depth, the soils age of the Grove Mountains is 0.5-3.5Ma. No remnants of glaciations are found on the soil sites of Mount Harding, which suggests that the Antarctic glaciations have not reached the soil sites since at least 0.5Ma, and the ice cap was not much higher than present, even during the Last Glacial Maximum. The average altitude of the contact line of level of blue ice and outcrop is 2050m, and the altitude of soil area is 2160m. The relative height deviation is about 110m, so the soils have developed and preserved until today. The parental material of the soils originated from alluvial sedimentary of baserocks nearby. Sporepollen were extracted from the soils, arbor pollen grains are dominant by Pinus and Betula, as well as a small amount Quercus, Juglans, Tilia and Artemisia etc. Judging from the shape and colour, the sporepollen group is likely attributed to Neogene or Pliocene in age. This indicates that there had been a warm period during the Neogene in the Grove Mountains, East Antarctica.
Resumo:
Observation of the Miocene aeolian dust deposits in Qin'an area provide a long-timescale, almost continuous geological record for understanding significant environmental changes, such as the environmental evolution of Asian monsoons and the inland Asian aridification, and make possible new explorations of global and regional environmental evolutions and other relevant studies. However, the QA-I and QA-II sections that are previously investigated are near to each other, and there is a lack in understanding the spatial characteristics of changes in paleoenvironment. Therefore, new sections of Miocene aeolian dust deposits are needed to complete the present spatial framework. Meanwhile, it is necessary to carry out in-depth studies, which are already belated, on the depositional characteristics of these Miocene aeolian dust deposits.This thesis choose the Miziwan section and Shaogou section that are west to Liupan Mountain for magnetostratigraphic studies, results of which are compared with the QA-I section with respect to the lithology, magnetic susceptibility and paleomagnetic polarity stratigraphy. Quartz-fraction grain size of 300 samples from the QA-I section was analyzed. In addition, 30 out of these samples were determined in terms of the quartz morphological characteristics by using scanning electronic microscopy. On the basis of these data and the correlation with the Xifeng sequence of aeolian dust deposits, the following 3 conclusions are drawn as below:The upper and the lower boundary age of the Miziwan section are 11.6 Ma B.Rand 18.5 Ma B.R, respectively. The Shaogou section spans from 15.1 Ma B.P, to20.8 Ma B.R The lower boundary age of both sections is no older than that of theQA-I section. The Miziwan and the Shaogou sections can be well correlated withthe QA-I section in terms of the field lithological features, magnetic susceptibilityand magnetic polarity stratigraphy.Sedimentological evidence of the QA-I quartz grain size and quartz morphologicalcharacteristics further supports the previous conclusion that the QA-Iloess-paleosol sequence is of aeolian origin, and also verifies the accretionalfeatures in paleosols of this sequence in terms of the grain-size composition.Modifications of the grain-size composition of the original dusts due to later-stageweathering and pedogenesis are common characteristic of Miocene and Quaternary aeolian dust depositions. The above-mentioned processes further rework and refine the bulk grain size, which is more evident in paleosol layers. 3, Like the hipparion Red-Earth and the Quaternary aeolian deposits, the Miocene loess deposits are transported by near-ground winter monsoons. However, the average wind intensity evidenced by the quartz median grain size of Miocene loess, together with the maximum wind intensity by the quartz maximum grain size, is weaker than those of the Quaternary.
Resumo:
Chinese eolian deposits are especially suitable for the studies of paleoclimatic changes, environmental magnetism and remanence acquisition mechanisms. In the past two decades, many studies have documented their magnetic properties. However, some important problems, such as the origin of magnetic minerals, the mechanisms for enhancing magnetic susceptibility and the lock-in effect, remain debatable. Therefore, it is essential to detail the rock-magnetic properties of the eolian deposits. This study shows thermomagnetic analyses, petrographic measurements and soil chemistry methods can be combined to obtain a better understanding of the sequence of magnetic mineral alterations during thermal treatment and of the pedogenic mechanism responsible for the susceptibility enhancement. This helps to further develop the interpretation of paleoclimate records in the Holocene eolian deposits along a NW-SE transect of the loess plateau. A partial heating/cooling method and X-ray diffraction (XRD) analysis were performed on representative samples of the present-day loess, in order to investigate mineralogical changes during thermal treatment. The temperature-dependent susceptibility (TDS) and XRD results show complex alteration of magnetic phases during heating and cooling. The 300 ℃ susceptibility hump in heating curves might be due to the production of maghemite from less magnetic lepidocrocite during heating. Goethite is transformed into hematite when heating to above 300 ℃. The susceptibility decrease from 300 ℃ to 450 ℃ can be interpreted as the conversion of maghemite to hematite. This thermal instability makes it possible to quantatively estimate the maghemite contribution to the pedogenically-enhanced susceptibility in loess or paleosols. Minor occurrence of thermally-stable maghemite in the present-day loess is possible; nevertheless, the TDS measurements show that the degree of the thermally-induced alteration is closely related to pedogenesis. The TDS measurement and XRD analysis results demonstrate that although magnetite and hematite both exist in the Holocene loess eolian deposits and their modern source area, magnetite is the predominant contributor to magnetic susceptibility. Both magnetite and hematite are the primary carriers of the remanent magnetization. Fine-grained maghemite, mainly produced by pedogenesis, is significantly responsible for enhancement of the magnetic susceptibility in the Chinese loess and paleosols. Since the degree of oxidation of magnetite grains depends on climate, the presence of maghemite has paleoclimatic significance, and variations in climate could be reflected as variations in the amount of low-temperature oxidation. If that is the case, the TDS curves can be used to compare the effects of climate at different sampling sites. The TDS results along the studied NW-SE transect suggest that stronger pedogenesis results in higher content of maghemite and greater susceptibility decrease during thermal treatment. This behavior seems to indicate that the final product of pedogenic magnetite in Chinese loess and paleosols is maghemite, which makes significant contributions to the enhanced magnetic susceptibility of Chinese eolian deposits. It is interesting to note that the 510 ℃ Hopkinson/alteration peak is larger in the present-day loess than in the black loam for each section. Obiviously, the Hopkinson/alteration peak of the Holocene eolian deposits is closely related to the degree of pedogenesis, which is a function of climate, and thus the peak itself could be a useful climate indicator. There are three effects that may be important in producing this trend. First, low-temperature oxidation preferentially affects the finer single-domain magnetites responsible for the Hopkinson peak, which is therefore suppressed in the more oxidized loams. Second, the possible production of uniaxial magnetite with shape anisotropy can also lead to a relatively muted Hopkinson peak. There is, additionally, a third alternative, and the one preferred here, that the natural alteration processes involved in pedogenic susceptibility enhancement have probably depleted the supply of iron-bearing precursor phases, so that less new magnetite is formed on heating. In summary, the TDS method is very reliable and highly sensitive in detecting magnetic phase changes in eolian deposits during thermal treatment, which are closely related to pedogenic processes. Thus, the studied NW-SE transect clearly exhibits paleoclimatically-induced mineral- and rock-magnetic variations. It is suggested that TDS can be used as a new method for the analysis of pedogenesis and climatic change.