16 resultados para patulin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patulin (PAT) is a mycotoxin produced by various species of fungi, with Penicillium expansum being the most commonly occurring. Apples and apple products are the main sources of PAT contamination. This mycotoxin has been shown to induce toxic effects in animals, a few of which include reproductive toxicity and interference with the endocrine system. Here the endocrine disrupting potential of PAT has been investigated in vitro to identify disruption at the level of oestrogen, androgen, progestagen and glucocorticoid nuclear receptor transcriptional activity, and to assess interferences in estradiol, testosterone and progesterone steroid hormone production. At the receptor level, 0.5-5000ng/ml (0.0032-32μM) PAT did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs); however, nuclear transcriptional activity was affected. A >6 fold increase in the glucocorticoid receptor transcriptional activity was observed following treatment with 5000ng/ml PAT in the presence of cortisol. At the hormone production level, despite cytotoxicity being observed after treatment with 5000ng/ml PAT, estradiol levels had increased >2 fold. At 500ng/ml PAT treatment, an increase in progesterone and a decrease in testosterone production were observed. The findings of this study could be considered in assessing the health risks following exposure to PAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the production of patulin in apple fruits is mainly by Penicillium expansum, there is no information on the ability of heat resistant moulds that may survive pasteurization to produce this mycotoxin in juice packages during storage and distribution. In this study, the production of patulin by Byssochlamys spp (Byssochlamys nivea FRR 4421, B. nivea ATCC 24008 and Byssochlamys fulva IOC 4518) in cloudy and clarified apple juices packaged in laminated paperboard packages or in polyethylene terephthalate bottles (PET) and stored at both 21 degrees C and 30 degrees C, was investigated. The three Byssochlamys strains were able to produce patulin in both cloudy and clarified apple juices. Overall, the lower the storage temperature, the lower the patulin levels and mycelium dry weight in the apple juices (p<0.05). The greatest variations in pH and degrees Brix were observed in the juices from which the greatest mycelium dry weights were recovered. The maximum levels of patulin recovered from the juices were ca. 150 mu g/kg at 21 degrees C and 220 mu g/kg at 30 degrees C. HPLC-UV, HPCL-DAD and mass spectrometry analyses confirmed the ability of B. fulva IOC 4518 to produce patulin. Due to the heat resistance of B. nivea and B. fulva and their ability to produce patulin either in PET bottles or in laminated paperboard packages, the control of contamination and the incidence of these fungi should be a matter of concern for food safety. Control measures taken by juice industries must also focus on controlling the ascospores of heat resistant moulds. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hundred and eleven samples of processed fruit juices (apple, grape, pineapple, papaya, guava, banana and mango) and 38 samples of sound fruits (apple, papaya, mango, pear and peach) produced and marketed in Brazil, were analysed for patulin by HPLC. Only one out of 30 samples of apple juice was found positive at 17 μg/l. Patulin was not detected in the other foodstuffs. It was found in 14 samples of spoiled fruit samples of apple (150-267 μg/kg), pear (134-245 μg/kg) and peach (92-174 μg/kg). Confirmation of the identity of patulin was based on the UV spectrum obtained by the HPLC diode array detector, compared with that of standard patulin, TLC developed by several solvent systems and sprayed with 3-methyl-2-benzothiazolinone hydrazone, and by acetylation with acetic anhydride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intestinal mucosa is the first biological barrier encountered by natural toxins, and could possibly be exposed to high amounts of dietary mycotoxins. Patulin (PAT), a mycotoxin produced by Penicillium spp. during fruit spoilage, is one of the best known enteropathogenic mycotoxins able to alter functions of the intestine (Maresca et al., 2008). This study evaluated the effects of PAT on barrier function of the gut mucosa utilizing the intestinal epithelial cell model Caco-2, and scrutinized immunomodulatory effects using human peripheral blood mononuclear cells (PBMC) and human blood monocyte-derived dendritic cells (moDCs) as test systems. PAT exposure reduced Caco-2 cell viability at concentrations above 12 mM. As expected, the integrity of a polarized Caco-2 monolayer was affected by PAT exposure, as demonstrated by a decrease in TER values, becoming more pronounced at 50 mM. No effects were detected on the expression levels of the tight junction proteins occludin, claudin-1 and claudin-3 at 50 mM. However, the expression of zonula occludens-1 (ZO-1) and myosin light chain 2 (MLC2) declined. Also, levels of phospho-MLC2 (p-MLC2) increased after 24 h of exposure to 50 mM of PAT. T cell proliferation was highly sensitive to PAT with major effects for concentrations above 10 nM of PAT. The same conditions did not affect the maturation of moDC. PAT causes a reduction in Caco-2 barrier function mainly by perturbation of ZO-1 levels and the phosphorylation of MLC. Low doses of PAT strongly inhibited T cell proliferation induced by a polyclonal activator, but had no effect on the maturation of moDC. These results provide new information that strengthens the concept that the epithelium and immune cells of the intestinal mucosa are important targets for the toxic effects of food contaminants like mycotoxins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycotoxins – from the Greek μύκης (mykes, mukos) “fungus” and the Latin (toxicum) “poison” – are a large and growing family of secondary metabolites and hence natural products produced by fungi, in particular by molds (1). It is estimated that well over 1,000 mycotoxins have been isolated and characterized so far, but this number will increase over the next few decades due the availability of more specialized analytical tools and the increasing number of fungi being isolated. However, the most important classes of fungi responsible for these compounds are Alternaria, Aspergillus (multiple forms), Penicillium, and Stachybotrys. The biological activity of mycotoxins ranges from weak and/or sometimes positive effects such as antibacterial activity (e.g. penicillin derivatives derived from Penicillium strains) to strong mutagenic (e.g. aflatoxins, patulin), carcinogenic (e.g. aflatoxins), teratogenic, neurotoxic (e.g. ochratoxins), nephrotoxic (e.g. fumonisins, citrinin), hepatotoxic, and immunotoxic (e.g. ochratoxins, diketopiperazines) activities (1, 2), which are discussed in detail in this volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To assay sago starch from Papua New Guinea (PNG) for important mycotoxins and to test fungal isolates from sago for mycotoxin production in culture. Methods and Results: Sago starch collected from Western and East Sepik Provinces was assayed for aflatoxins, ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin and zearalenone and all 51 samples were negative. Frequently isolated species of Penicillium (13), Aspergillus (five) and Fusarium (one) were cultured on wheat grain, and tested for the production of ochratoxin A, cyclopiazonic acid, sterigmatocystin, citrinin, patulin and penicillic acid. All 12 isolates of P. citrinin and one of two A. flavipes isolates produced citrinin. A single isolate of A. versicolor produced sterigmatocystin. No other mycotoxins were detected in these cultures. Conclusions: No evidence was found of systemic mycotoxin contamination of sago starch. However, the isolation of several mycotoxigenic fungi shows the potential for citrinin and other mycotoxins to be produced in sago stored under special conditions. Significance and Impact of the study: Sago starch is the staple carbohydrate in lowland PNG and the absence of mycotoxins in freshly prepared sago starch is a positive finding. However, the frequent isolation of citrinin-producing fungi indicates a potential health risk for sago consumers, and food safety is dependant on promoting good storage practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The patulin, (4hydroxy-4furo[3,2-c]pyran(6H)-1), is a thermal resistent mycotoxin produced by several species of fungi are common in plants, mainly in derivatives and apples. Studies on the toxicity in animals have shown that mycotoxin has character teratogenic, and carcinogenic in mice immunotoxic. Its biosynthesis is well understood involving a series of reactions of condensation and oxiredução, many catalyzed by enzymes. The danger of contamination of food with patulin, warning about the need for a more rigorous control. Recent research aimed their removal and degradation as well as increase the sensitivity of the tests, making them faster and at less cost. The removal of patulin of food is made with composite adsorbents, with inconvenience to diminish the quality of the product by adsorbs other components desirable. The degradation is made with sulfur compounds, which are not allowed in food in many countries, and the growth of yeasts, such as the production of cider. Many yeasts have resistance against patulin and produce compounds capable degrade it. Here, we reviewed research on patulin with emphasis on its influence in food industry, incidence of patulin in apple juice and other foods, maximum permissible concentrations, health effects, biosynthesis, removal, degradation and most widely used methods for its detection and quantification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerable losses during apple fruit storage occur due to microbiological diseases, mainly caused by Penicillium expansum, which in addition to fruit pulp deterioration produces patulin, a mycotoxin with carcinogenic and teratogenic activity. Biological control of post-harvest disease by antagonist yeasts focused on killer toxins is an appreciable alternative to the chemical fungicides, due to the low possibility of toxic residues demonstrated during fermentative processes. Twenty out of 44 yeasts (16 isolated from fruits, 10 from corn silage and 18 from laboratory anthill), showed antagonism against spores of P. expansum. The assay in solid medium pointed the strongest nutrient competition antagonism by D. hansenii strain C1 (31 mm inhibition diameter), while D. hansenii strain C7 (15 mm) showed higher antibiosis and parasitism pattern. In the following step the extracellular activity was tested performing the assay with culture supernatant in Yeast Medium agar, where C. guilliermondii P3 was more effective against conidia germination (inhibition rate of 58.15%) while P. ohmeri showed better inhibition on micelial growth (66.17%). The antibiosis showed by both yeasts could suggest probable mechanism associated with killer phenomenon, once both strains were killer positive against sensitive reference strains (S. cerevisiae NCYC 1006 and P. kluyveri CAY-15). In order to enhance the production of antifungal substance, these yeasts were cultivated with P. expansum, but the difference between culture supernatant obtained from yeasts cultivated alone and with mould was not significant (P > 0.05). The results demonstrated that the yeasts application constitute a promising tool, enhancing the biological control of P. expansum in post-harvest diseases of apple fruit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blue mould caused by Penicillium expansum Link is one of the most destructive rot of pome fruit in all growing areas (Snowdon, 1990; Jones and Aldwinckle, 1991; Tonini,1996) In the past, Penicillium rot has been controlled by fungicide postharvest treatment mainly by thiabendazole (TBZ) and benomyl (Hardenburg and Spalding, 1972), but their intense use produced the appearance of resistant strains with a great reduction of their activity The aims of the present study were to characterize the isolates of Pencillium sp causing blue mold on pear in Italy by physiological and biochemical parameters. In particular differencing also the behavior of isolates to relationship with sensitivity or resistance to TBZ treatments. We have examined the early stage of infection in relation to enzyme activity, local modulation of pH, production of organic acids, and to secondary metabolism of pathogen. The results described here confirm that the majority of P. expansum isolates from pears packing houses are resistant to TBZ, Among the TBZ-resistant isolates scored in this work, different isolates (RR) showed higher percentage of conidial germination on TBZ-amended medium compared to non amended medium. This may indicate a stimulatory effect of TBZ on conidial germination. Therefore TBZ treatments are not only ineffective for controlling P. expansum, but they may also increase the severity of blue mould on fruits. In the absence of fungicide, isolates showed a significant difference for infection severity, R and RR isolates are characterized by higher pathogenic fitness on fruits, producing larger lesions than S isolates. These data are supported by the study with laboratory-induced resistant isolates, which shows the lack of correlation between TBZ resistance and osmotic sensitivity, and highlights the association between TBZ resistance and infection severity (Baraldi et al 2003). Enzymatic screening gave a positive reaction to esterase, urease, pectinase activity, in addition, the pathogen is able to synthesize a complex enzyme act to degrade the main components of the cell wall especially pectin and cellulose. Isolated sensitive and resistant are characterized by a good activity of pectinase, especially from poligactoronase, which, as already reported by several studies (D'hallewin et al, 2004; Prusky et al, 2004), are the basis of degradative process of cell wall. Also, although the measure was minor also highlighted some activities of cellulase, but even note in the production of this kind of cellulase and hemicellulase P. Expansum were not targeted, studies have found no other source of information in this regard. Twenty isolates of Penicillium expansum, were tested in vitro ad in vivo for acid production ability and pH drop. We have found that modulation of pH and the organic acids extrusion were influence to various parameter:  Initial pH: in general, the greatest reduction of pH was observed in isolates grown at pH 7, except for four isolates that maintained the pH of the medium close to 7, the others significantly decreased the pH, ranging from 5.5 to 4.1.. In extreme acid condition (pH 3,0) growth and modulation of pH is most lower respect optimal condition (pH 5,0). Also isolates R and RR have showed a greater adaptation to environmental condition more than isolates S.  Time: although the acidification continues for some days, PH modulation is strongest in early hours (48-72 hours)of inoculation process. Time also affects the quality of organic acids, for example in vitro results showed an initial abundant production of succinc acid, followed to important production of galacturoinc acid.  Substrates: there are many differences for the type of acids produced in vitro and in vivo. Results showed in vivo an abundant production of galacturonic, malic, and citric acids and some unknown organic acids in smaller concentrations. Secondary metabolite analysis revealed intra-specific differences, and patulin was found in all isolates, but most significant reduction was observed between in vitro and in vivo samples. There was no correlation between the concentration of patulin, and the percentage of infected fruits, but sample with a lower infection severity of rotten area than the others, showed a significantly lower mycotoxin concentration than samples with a higher lesion diameter of rotten area. Beyond of patulin was detected the presence of another secondary metabolite, penitrem A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mucosa intestinal é a primeira barreira biológica encontrada pelas micotoxinas presentes nos alimentos, sendo a patulina, uma micotoxina produzida por fungos do género Penicillium spp., uma preocupação particular atendendo a que a exposição humana a esta micotoxina pode conduzir a efeitos imunológicos, neurológicos e gastrointestinais. Considerando estes efeitos para a saúde, o presente estudo tem como objetivos a avaliação do efeito tóxico da exposição intestinal a patulina, bem como a determinação do potencial efeito protetor da coadministração de patulina e cisteína na membrana intestinal, utilizando para o efeito células Caco-2. A integridade da membrana intestinal foi determinada pela medição da resistência elétrica transepitelial (TEER). Os resultados evidenciaram um decréscimo acentuado nos valores de TEER após 24 horas de exposição celular a 95 μM de patulina. Para as concentrações mais reduzidas verificou-se uma redução máxima inferior a 25% após 24 horas de exposição. A coadministração de patulina (95 μM) e cisteína (40 μM) revelou um decréscimo nos valores de TEER. O tratamento com cisteína em concentrações superiores ( 400 μM) revelou efeito protetor da membrana intestinal, tendo em conta os valores de TEER. Estes resultados contribuem para uma avaliação do risco mais precisa associada à exposição a contaminantes alimentares.