10 resultados para patologi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

No more published.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Parechoviruses (HPEV) belong to the family Picornaviridae of positive-stranded RNA viruses. Although the parechovirus genome shares the general properties of other picornaviruses, the genus has several unique features when compared to other family members. We found that HPEV1 attaches to αv integrins on the cell surface and is internalized through the clathrin-mediated endocytic pathway. During he course of the infection, the Golgi was found to disintegrate and the ER membranes to swell and loose their ribosomes. The replication of HPEV1 was found to take place on small clusters of vesicles which contained the trans-Golgi marker GalT as well as the viral non-structural 2C protein. 2C was additionally found on stretches of modified ER-membranes, seemingly not involved in RNA replication. The viral non-structural 2A and 2C proteins were studied in further detail and were found to display several interesting features. The 2A protein was found to be a RNA-binding protein that preferably binds to positive sense 3 UTR RNA. It was found to bind also duplex RNA containing 3 UTR(+)-3 UTR(-), but not other dsRNA molecules studied. Mutagenesis revealed that the N-terminal basic-rich region as well as the C-terminus, are important for RNA-binding. The 2C protein on the other hand, was found to have both ATP-diphosphohydrolase and AMP kinase activities. Neither dATP nor other NTP:s were suitable substrates. Furthermore, we found that as a result of theses activities the protein is autophosphorylated. The intracellular changes brought about by the individual HPEV1 non-structural proteins were studied through the expression of fusion proteins. None of the proteins expressed were able to induce membrane changes similar to those seen during HPEV1 infection. However, the 2C protein, which could be found on the surface of lipid droplets but also on diverse intracellular membranes, was partly relocated to viral replication complexes in transfected, superinfected cells. Although Golgi to ER traffic was arrested in HPEV1-infected cells, none of the individually expressed non-structural proteins had any visible effect on the anterograde membrane traffic. Our results suggest that the HPEV1 replication strategy is different from that of many other picornaviruses. Furthermore, this study shows how relatively small differences in genome sequence result in very different intracellular pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. Pancreatic cancer is one of the major causes of cancer death in the industrialised world. The overall survival of patients with ductal pancreatic adenocarcinoma is poor: 5-year survival is only 0.2 to 4%. Tumour stage and histological grade are used as prognostic markers in pancreatic cancer. However, there are differences in survival within stages and histological grades. New, additional and more accurate prognostic tools are needed. Aims. The purpose of this study was to investigate whether the tissue expression of potential and promising tumour markers p27, tenascin C, syndecan-1, COX-2 and MMP-2 are associated with clinicopathological parameters in pancreatic cancer. The expression of p27, tenascin C and syndecan-1 was also evaluated in acute and chronic pancreatitis. The main purpose in the study was to find new prognostic markers for pancreatic adenocarcinoma. Patients. The study included 147 patients with histologically verified pancreatic adenocarcinoma treated at Helsinki University Central Hospital from 1974 to1998. Methods. The expression of tumour marker antigens was demonstrated by immunohistochemistry using monoclonal antibodies against p27, syndecan-1, tenascin C, COX-2 and MMP-2. The results were compared with clinicopathological variables, i.e. age, sex, TNM stage and histological grade. Survival analyses were performed with univariate Kaplan-Meier life-tables and the log-rank test, while multivariate analyses were performed using Cox regression. Results. Pancreatic adenocarcinomas expressed p27, syndecan-1, tenascin C, COX-2 and MMP-2 in 30, 94, 92, 36 and 50% of the samples, respectively. Loss of p27 expression was associated with poor prognosis in stage I and II pancreatic cancer. Stromal syndecan-1 expression was an independent prognostic marker in pancreatic cancer, whereas epithelial syndecan-1 expression predicted better prognosis only in stage I and II disease. Tenascin C expression did not correlate with survival but was associated with differentiation. COX-2 expression was associated with poor outcome and was an independent prognostic factor. Epithelial MMP-2 correlated with poor prognosis in pancreatic cancer. Conclusion: p27 and epithelial syndecan-1 are prognostic markers in early (stage I and II) pancreatic cancer. Stromal syndecan-1, COX-2 and epithelial MMP-2 are prognostic factors in ductal pancreatic adenocarcinoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The equilibrium between cell proliferation, differentiation, and apoptosis is crucial for maintaining homeostasis in epithelial tissues. In order for the epithelium to function properly, individual cells must gain normal structural and functional polarity. The junctional proteins have an important role both in binding the cells together and in taking part in cell signaling. Cadherins form adherens junctions. Cadherins initiate the polarization process by first recognizing and binding the neighboring cells together, and then guiding the formation of tight junctions. Tight junctions form a barrier in dividing the plasma membranes to apical and basolateral membrane domains. In glandular tissues, single layered and polarized epithelium is folded into tubes or spheres, in which the basal side of the epithelial layer faces the outer basal membrane, and the apical side the lumen. In carcinogenesis, the differentiated architecture of an epithelial layer is disrupted. Filling of the luminal space is a hallmark of early epithelial tumors in tubular and glandular structures. In order for the transformed tumor cells to populate the lumen, enhanced proliferation as well as inhibition of apoptosis is required. Most advances in cancer biology have been achieved by using two-dimensional (2D) cell culture models, in which the cells are cultured on flat surfaces as monolayers. However, the 2D cultures are limited in their capacity to recapitulate the structural and functional features of tubular structures and to represent cell growth and differentiation in vivo. The development of three-dimensional (3D) cell culture methods enables the cells to grow and to be studied in a more natural environment. Despite the wide use of 2D cell culture models and the development of novel 3D culture methods, it is not clear how the change of the dimensionality of culture conditions alters the polarization and transformation process and the molecular mechanisms behind them. Src is a well-known oncogene. It is found in focal and adherens junctions of cultured cells. Active src disrupts cell-cell junctions and interferes with cell-matrix binding. It promotes cell motility and survival. Src transformation in 2D disrupts adherens junctions and the fibroblastic phenotype of the cells. In 3D, the adherens junctions are weakened, and in glandular structures, the lumen is filled with nonpolarized vital cells. Madin-Darby canine kidney (MDCK) cells are an epithelial cell type commonly used as a model for cell polarization. Its-src-transformed variants are useful model systems for analyzing the changes in cell morphology, and they play a role in src-induced malignant transformation. This study investigates src-transformed cells in 3D cell cultures as a model for malignant transformation. The following questions were posed. Firstly: What is the role of the composition and stiffness of the extracellular matrix (ECM) on the polarization and transformation of ts v-src MDCK cells in 3D cell cultures? Secondly: How do the culture conditions affect gene expression? What is the effect of v-src transformation in 2D and in 3D cell models? How does the shift from 2D to 3D affect cell polarity and gene expression? Thirdly: What is the role of survivin and its regulator phosphatase and tensin homolog protein (PTEN) in cell polarization and transformation, and in determining cell fate? How does their expression correlate with impaired mitochondrial function in transformed cells? In order to answer the above questions, novel methods of culturing and monitoring cells had to be created: novel 3D methods of culturing epithelial cells were engineered, enabling real time monitoring of a polarization and transformation process, and functional testing of 3D cell cultures. Novel 3D cell culture models and imaging techniques were created for the study. Attention was focused especially on confocal microscopy and live-cell imaging. Src-transformation disturbed the polarization of the epithelium by disrupting cell adhesion, and sensitized the cells to their environment. With active src, the morphology of the cell cluster depended on the composition and stiffness of the matrix. Gene expression studies revealed a broader impact of src transformation than mere continuous activity of src-kinase. In 2D cultures, src transformation altered the expression of immunological, actin cytoskeleton and extracellular matrix (ECM). In 3D, the genes regulating cell division, inhibition of apoptosis, cell metabolism, mitochondrial function, actin cytoskeleton and mechano-sensing proteins were altered. Surprisingly, changing the culture conditions from 2D to 3D affected also gene expression considerably. The microarray hit survivin, an inhibitor of apoptosis, played a crucial role in the survival and proliferation of src-transformed cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

De flesta har i sin närhet någon som drabbats av cancer och sjukdomsfallen har ökat genom åren. Den yrkesgrupp som ställer diagnos av denna sjukdom är patologer. Bristen på patologer är idagsläget stor och det finns därför ett behov av att finna effektiva lösningar för att möta denna brist och en ökande mängd patienter. För att digitalisera vävnadsproven som diagnostiseras, scannas dessa in med en glasscanner. Dessa digitala bildfiler kan sedan visas i ett bildvisningsprogram och delas digitalt mellan patologer på distans. Detta begrepp kallas för telepatologi. Studien utgår utifrån följande frågeställningar: Vilka krav är väsentliga och bör ingå i en utvärdering för bildvisningsprogram avsedda för diagnostik inom telepatologi? Vilket bildvisningsprogram är mest lämpat att implementeras i ett webbaserat system baserat på dessa väsentliga krav? Syftet med studien är att undersöka vilka krav som är väsentliga och bör ingå i en utvärdering av bildvisningsprogram avsedda för diagnostik inom telepatologi, samt att utföra en utvärdering av ett urval bildvisningsprogramvaror med hjälp av dessa krav. En fallstudie genomfördes med datainsamlingsmetoderna: intervjuer med två personer från studiens samarbetspartner CGM, Frågeformulär där Sveriges patologer var respondenter samt dokumentstudier för att samla in information gällande bildvisningsprogrammen. Studien tillämpar utvalda delar ur Anders G. Nilssons SIV-metod som tillvägagångsätt för att samla in krav samt för att göra ett urval av bildvisningsprogram som sedan utvärderas gentemot dessa krav. Resultaten av datainsamlingarna analyserades och ledde till ett kravdokument med väsentliga krav.Tre så kallade utslagsgivande faktorer bland dessa krav var att bildvisningsprogrammet måste vara webbaserat utan installation på klient, funktioner för in- och ut-zoomning samt panorering måste finnas. Utvärderingen av utvalda bildvisningsprogram visade slutligen att OpenSlide var mest lämpad att implementeras i ett webbaserat system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fino dagli albori della metodica scientifica, l’osservazione e la vista hanno giocato un ruolo fondamentale. La patologia è una scienza visiva, dove le forme, i colori, le interfacce e le architetture di organi, tessuti, cellule e componenti cellulari guidano l’occhio del patologo e ne indirizzano la scelta diagnostico-classificativa. L’osservazione del preparato istologico in microscopia ottica si attua mediante l’esame e la caratterizzazione di anomalie ad ingrandimenti progressivamente crescenti, a diverse scale spaziali, che partono dalla valutazione dell’assetto architettonico sovracellulare, per poi spostarsi ad investigare e descrivere le cellule e le peculiarità citomorfologiche delle stesse. A differenza di altri esami di laboratorio che sono pienamente quantificabili, l’analisi istologica è intrinsecamente soggettiva, e quindi incline ad un alto grado di variabilità nei risultati prodotti da differenti patologi. L’analisi d’immagine, l’estrazione da un’immagine digitale di contenuti utili, rappresenta una metodica oggettiva, valida e robusta ormai largamente impiegata a completamento del lavoro del patologo. Si sottolinea come l’analisi d’immagine possa essere vista come fase descrittiva quantitativa di preparati macroscopici e microscopici che poi viene seguita da una interpretazione. Nuovamente si sottolinea come questi descrittori siano oggettivi, ripetibili e riproducibili, e non soggetti a bassa concordanza inter operatore. La presente tesi si snoda attraverso un percorso concettuale orientato ad applicazioni di analisi d’immagine e patologia quantitativa che parte dalle applicazioni più elementari (densità, misure lineari), per arrivare a nozioni più avanzate, quali lo studio di complessità delle forme mediante l’analisi frattale e la quantificazione del pattern spaziale di strutture sovracellulari.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Editors: 1896-1931, John Vennerholm; 1932-48, E.G. Forssell and A.V. Sahlstedt.