673 resultados para pastures
Resumo:
Statistical methodology was applied to a survey of time-course incidence of four viruses (alfalfa mosaic virus, clover yellow vein virus, subterranean clover mottle virus and subterranean clover red leaf virus) in improved pastures in southern regions of Australia. -from Authors
Resumo:
A nationwide survey was made of the time-course incidence of alfalfa mosaic virus (AMV), clover yellow vein virus (CYVV), subterranean clover mottle virus (SCMoV) and subterranean clover red leaf virus (SCRLV) in improved pastures in southern regions of Australia. Averaged over all states, the highest mean incidence recorded for samples infected with individual viruses in either winter or spring was 9.4% for AMV, 5.7% for CYVV, 10.9% for SCMoV and 7.5% for SCRLV. For AMV and SCRLV, there was an increasing trend from spring 1984 to spring 1986. A similar increasing trend for SCMoV was more evident in winter than in spring. For CYVV, no time-course pattern was evident. Results support the proposition that viruses contribute significantly to "clover-decline', a well-known problem in pastures of Trifolium subterraneum. -from Authors
Resumo:
Exotic grasses have been introduced in countries worldwide for pasture improvement, soil stabilisation and ornamental purposes. Some of these introductions have proven successful, but many have not (Cook & Dias 2006). In Australia, the Commonwealth Plant Introduction Scheme was initiated in 1929, and over-time introduced more than 5000 species of grasses, legumes and other forage and browse plants (Cook & Dias 2006). Lonsdale (1994) suggested that, in tropical Australia, 13% of introductions have become a problem, with only 5% being considered useful for agriculture. Low (1997) suggested that 5 out of 18 of Australia's worst tropical environmental weeds were intentionally introduced as pasture grasses. The spread and dominance of invasive grass species that degrade the quality of pastures for production can impact significantly on the livelihoods of small proprietors. Although Livestock grazing contributes only a small percentage to the world's GDP (1.5%), maintaining the long-term stability of this industry is crucial because of the high social and environmental consequence of a collapse. One billion of the world's poor are dependent on livestock grazing for food and income with this industry occupying more than 25% of the world's land base (Steinfeld et al. 2006). The ling-term sustainability of livestock grazing is also crucial for the environment. A recent FAO report attributed livestock production as a major cause of five of the most serious environmental problems: global warming, land degredation, air and water pollution, and the loss of biodiversity (Steinfeld et al. 2006). For these reasons, finding more effective approaches that guide the sustainable management of pastures is urgently needed. In Australia more than 55% of land use is for livestock grazing by sheelp and/or cattle. This land use dominate in the semi-arid and arid regions where rainfall and soil conditions are marginal for production (Commonwealth of Australia 2004). Although the level of agriculture production by conglomerates is increasing, the majority of livestock grazing within Australia remains family owned and operated (Commonwealth of Australia 2004). The sustainability of production from a grazed pasture is dependent on its botanical composition (Kemp & Dowling 1991, Kemp et al. 1996). In a grazed pasture, the dominance of an invasive grass species can impact on the functional integrity of the ecosystem, including production and nutrient cycling; wwhich will in turn, affect the income of proprietors and the ability of the system to recover from disturbance and environmental change. In Australia, $0.3 billion is spent on weed control in livestock production, but despite this substantial investment $1.9 billion is still lost in yield as a result of weeds (Sinden et al. 2004). In this paper, we adaprt a framework proposed for the restoration of degraded rainforest communities (Lamb & Gilmour 2003, Lamb et al. 2005) to compare and contrast options for recovering function integrity (i.e. a diverse set of desirable plant species that maintain key ecological processes necessary for sustainable production and nutrient cycling) within pasture communities dominated by an invasive grass species. To do this, we uase a case-study of the invasion of Eragrostis curvula (Africal lovegrss; hereafter, Lovegrass), a serious concern in Australian agricultural communities (Parsons and Cuthbertson 1992). The spread and dominance of Lovegrass is a problem because its low palatability, low nutritional content and competitiveness affect the livelihood of graziers by reducing the diversity of other plant species. We conclude by suggesting modifications to this framework for pasture ecosystems to help increase the effiency of strategies to protect functional integrity and balance social/economic and biodiversity values.
Resumo:
Seed production and soil seed hanks of H. contortus were studied in a subset of treatments within an extensive grazing study conducted in H. contortus pasture in southern Queensland between 1990 and 1996. Seed production of H. contortus in autumn ranged from 260 to 1800 seeds/m2 with much of this variation due to differences in rainfall between years. Seed production was generally higher in the silver-leaved ironbark than in the narrow-leaved ironbark land class and was also influenced by a consistent stocking rate x pasture type interaction. Inflorescence density was the main factor contributing to the variable seed production and was related to the rainfall received during February. The number of seeds per inflorescence was unaffected by seasonal rainfall, landscape position, stocking rate or legume oversowing. Seed viability was related to the rainfall received during March. Soil seed banks in spring varied from 130 to 520 seeds/m2 between 1990 and 1995 with generally more seed present in the silver-leaved ironbark than in the narrow-leaved ironbark land class. There were poor relationships between viable seed production and the size of the soil seed bank, and between the size of the soil seed bank and seedling recruitment. This study indicates that H. contortus has the potential to produce relatively large amounts of seed and showed that the seasonal pattern of rainfall plays a major role in achieving this potential
Resumo:
The dynamics of Heteropogon contortus (black speargrass) populations were measured in a subset of treatments contained within an extensive grazing study conducted between 1990 and 1996 in H. contortus pasture in southern Queensland. This subset included 2 landscape positions and 3 stocking rates in both native pasture and legume-oversown native pasture. Severe drought conditions throughout much of the study necessitated ongoing adjustments to the original stocking rates and, as a result, drought was the major influence on the dynamics of H. contortus populations. Plant density and basal area in the silver-leaved ironbark landscape were consistently higher than those in the narrow-leaved ironbark landscape. There was limited evidence of any impact by either light or moderate stocking rate but there was evidence of an impact at the heaviest stocking rate. There was minimal impact of legume oversowing. Relatively large fluctuations in plant density occurred during this study resulting from the death of existing plants, due mainly to drought, and seedling recruitment. Similarly, there were relatively large fluctuations in basal area caused mainly by changes in plant size. Rates for turnover of plant numbers were relatively high whereas plant turnover rates of basal areas were relatively low. Regular seedling recruitment appeared necessary to ensure the persistence of this species. Despite the high turnover, populations were maintained at reasonable levels indicating the overall resilience of H. contortus.
Resumo:
The dynamics of the unpalatable Aristida spp. (wiregrasses) were measured in a subset of treatments contained within an extensive grazing study conducted between 1990 and 1996 in H. contortus pasture in southern Queensland. This paper reports the results from these treatments which included 2 land classes (silver-leaved and narrowleaved ironbark), 3 stocking rates (0.3, 0.6 and 0.9 beasts/ha) in both native pasture and legumeoversown native pasture, all in the absence of fire. Changes in plant density and basal area of Aristida spp. reflected differences in both the survival and size of existing plants together with a large seedling recruitment in 1991. Two different taxa of Aristida spp. were distinguished; however, there were no clear differences in the response of these 2 taxa to the treatments. Grazing had the greatest impact on population dynamics through reducing basal area as stocking rate increased. Neither landscape position nor legume oversowing had a major impact on Aristida spp. The results suggest that populations of Aristida spp. will be highest under light grazing and that seedling recruitment may be episodic
Resumo:
This paper reports an experiment undertaken to examine the impact of burning in spring together with reduced grazing pressure on the dynamics of H. contortus and Aristida spp. In H. contortus pasture in south-eastern Queensland. The overall results indicate that spring burning in combination with reduced grazing pressure had no marked effect on the density of either grass species. This was attributed to 2 factors. Firstly, extreme drought conditions restricted any increase in H. contortus seedling establishment despite the presence of an adequate soil seed bank prior to summer; and secondly, some differences occurred in the response to fire of the diverse taxonomic groupings in the species of Aristida spp. present at the study site. This study concluded that it is necessary to identify appropriate taxonomic units within the Aristida genus and that, where appropriate, burning in spring to manage pasture composition should be conducted under favorable rainfall conditions using seasonal forecasting indicators such as the Southern Oscillation Index
Resumo:
A strategy comprising a winter/spring protein supplement, rumen modifier and hormonal growth promotant (Compudose 400) was used in either the first year (Tl), second year (T2), or in both years (T1+2) following weaning in Brahman cross steers as a means of increasing liveweight gain up to 2.5 years of age. T2 produced the heaviest final liveweight (544.7 kg) and highest overall liveweight gain (366.7 kg), but these were not significantly different from T1 (538.6 kg; 360.9 kg), or T1+2 (528.7 kg; 349.3 kg). However, final liveweight and overall liveweight gains of T1 and T2 but not T1+2 were significantly greater than for untreated (C) steers (504.9 kg; 325.2 kg, both P < 0.05). Regardless of the strategy imposed, liveweight and liveweight gain were enhanced, however final liveweights in each treatment were below the preferred minimum target liveweight (570-580 kg) for premium export markets. Treatment in both years gave no benefit over treatment in 1 year only. 19th Biennial Conference. 5-9 July 1992. LaTrobe University, Melbourne.
Resumo:
A number of studies on Brigalow Research Station, Theodore, in Central Queensland, investigated the performance of different classes of cattle, with or without grain diets, on sown tropical pastures based on buffel and rhodes grasses. These studies were conducted for the Meat Research Corporation's DAQ 065 research project and monitored the growth, carcass attributes, meat quality and market suitability of weaner heifers and steers, 2% year-old steers and aged cull cows. The majority of grain feeding was on an ad lib basis during the winter-spring period when cattle growth rates on pastures are traditionally at or just above maintenance level. 21st Biennial Conference. 8-12 July 1996, University of Queensland. Brisbane.
Resumo:
Aphids can cause substantial damage to cereals, oilseeds and legumes through direct feeding and through the transmission of plant pathogenic viruses. Aphid-resistant varieties are only available for a limited number of crops. In Australia, growers often use prophylactic sprays to control aphids, but this strategy can lead to non-target effects and the development of insecticide resistance. Insecticide resistance is a problem in one aphid pest of Australian grains in Australia, the green peach aphid (Myzus persicae). Molecular analyses of field-collected samples demonstrate that amplified E4 esterase resistance to organophosphate insecticides is widespread in Australian grains across Australia. Knockdown resistance to pyrethroids is less abundant, but has an increased frequency in areas with known frequent use of these insecticides. Modified acetylcholinesterase resistance to dimethyl carbamates, such as pirimicarb, has not been found in Australia, nor has resistance to imidacloprid. Australian grain growers should consider control options that are less likely to promote insecticide resistance, and have reduced impacts on natural enemies. Research is ongoing in Australia and overseas to provide new strategies for aphid management in the future.
Resumo:
Reduced supplies of nitrogen (N) in many soils of southern Queensland that were cropped exhaustively with cereals over many decades have been the focus of much research to avoid declines in profitability and sustainability of farming systems. A 45-month period of mixed grass (purple pigeon grass, Setaria incrassata Stapf; Rhodes grass, Chloris gayana Kunth.) and legume (lucerne, Medicago sativa L.; annual medics, M. scutellata L. Mill. and M. truncatula Gaertn.) pasture was one of several options that were compared at a fertility-depleted Vertosol at Warra, southern Queensland, to improve grain yields or increase grain protein concentration of subsequent wheat crops. Objectives of the study were to measure the productivity of a mixed grass and legume pasture grown over 45 months (cut and removed over 36 months) and its effects on yield and protein concentrations of the following wheat crops. Pasture production (DM t/ha) and aboveground plant N yield (kg/ha) for grass, legume (including a small amount of weeds) and total components of pasture responded linearly to total rainfall over the duration of each of 3 pastures sown in 1986, 1987 and 1988. Averaged over the 3 pastures, each 100 mm of rainfall resulted in 0.52 t/ha of grass, 0.44 t/ha of legume and 0.97 t/ha of total pasture DM, there being little variation between the 3 pastures. Aboveground plant N yield of the 3 pastures ranged from 17.2 to 20.5 kg/ha per 100 mm rainfall. Aboveground legume N in response to total rainfall was similar (10.6 - 13.2 kg/ha. 100 mm rainfall) across the 3 pastures in spite of very different populations of legumes and grasses at establishment. Aboveground grass N yield was 5.2 - 7.0 kg/ha per 100mm rainfall. In most wheat crops following pasture, wheat yields were similar to that of unfertilised wheat except in 1990 and 1994, when grain yields were significantly higher but similar to that for continuous wheat fertilised with 75 kg N/ha. In contrast, grain protein concentrations of most wheat crops following pasture responded positively, being substantially higher than unfertilised wheat but similar to that of wheat fertilised with 75 kg N/ha. Grain protein averaged over all years of assay was increased by 25 - 40% compared with that of unfertilised wheat. Stored water supplies after pasture were < 134mm (< 55% of plant available water capacity); for most assay crops water storages were 67 - 110 mm, an equivalent wet soil depth of only 0.3 - 0.45 m. Thus, the crop assays of pasture benefits were limited by low water supply to wheat crops. Moreover, the severity of common root rot in wheat crop was not reduced by pasture - wheat rotation.
Resumo:
This study reports on the effect of oversowing perennial ryegrass (Lolium perenne L.) into a degraded perennial ryegrass and white clover (Trifolium repens L.) pasture to extend its productive life using various intensities of seedbed preparation. Sites in New South Wales (NSW), Western Australia (WA), South Australia (SA) and Tasmania (Tas.) were chosen by a local group of farmers as being degraded and in need of renovation. Control (nil renovation) and medium (mulch and graze, spray with glyphosphate and sow) renovation treatments were common to all sites whereas minimum (mulch and graze, and sow) and full seedbed (graze and spray with glyphosphate and then full seedbed preparation) renovation were imposed only at some sites. Plots varied in area from 0.14 to 0.50 ha, and were renovated then sown in March or April 2000 and subsequently grazed by dairy cows. Pasture utilisation was estimated from pre- and post-grazing pasture mass assessed by a rising plate pasture meter. Utilised herbage mass of the renovated treatments was significantly higher than control plots in period 1 (planting to August) and 2 (first spring) at the NSW site only. There was no difference among treatments in period 3 (first summer) at any site, and only at the WA and NSW sites in period 4 (March to July 2001) was there a response to renovation. As a result, renovation at the NSW site only significantly increased ryegrass utilisation over the whole experimental period. Ryegrass plant density was higher at the NSW, WA (excluding minimum renovation) and Tas. (excluding full renovation) sites 6 months after renovation but this was only sustained for 12 months for the minimum and medium treatments at the NSW and Tas. sites, respectively, presumably due to reduced competition from naturalised C4 summer grasses [kikuyu (Pennisetum clandestinum) and paspalum (Paspalum dilatatum)] in NSW At the NSW, WA and SA sites, the original ryegrass plant density was low (<35 plants/m2) compared with the Tas. site where density was around 185/m2. The response to renovating a degraded perennial ryegrass pasture varied between sites in Australia. Positive responses were generally small and were most consistent where renovation removed competing C4 summer grasses.
Resumo:
The rumen degradability parameters of the diet selected by two to four oesophageal-fistulated Brahman steers grazing a range of tropical pastures were determined by incubation of extrusa in nylon bags suspended in the rumen of rumen-fistulated (RF) Brahman steers. The effective protein degradability (Edg) was determined by measuring the rate of disappearance of neutral detergent insoluble nitrogen (NDIN) less acid detergent insoluble nitrogen (ADIN) in the incubated extrusa. Six to eight RF steers also grazed each of the pastures along with the oesophageal-fistulated steers, to allow determination of key rumen parameters and rumen particulate matter fractional outflow rates (FOR). The seven pastures studied included: native tropical grass (C4) pasture (major species Heteropogon contortus and Bothriochloa bladhii), studied in the early wet (NPEW), the wet/dry transition (NPT) and the dry (NPD) seasons; introduced tropical grass (C4) pasture (Bothriochloa insculpta), studied in the mid wet season (BB); the introduced tropical legumes (C3), Lablab purpureus (LL) and Clitoria ternatea (BP); and the temperate grass (C3) pasture, ryegrass (Lolium multiflorum, RG). Using the measured particle FOR values in calculations, the Edg estimates were very high for both C4 and C3 species: 0.82–0.91 and 0.95–0.98 g/g crude protein (CP), respectively. Substitution of an assumed FOR (kp = 0.02/h) for the measured values for each pasture type did not markedly affect estimates of Edg. However, C4 tropical grasses had much lower effective rumen degradable protein (ERDP) fractions (23–66 g/kg DM) than the C3 pasture species RG and LL (356 and 243 g/kg DM, respectively). This was associated with a lower potential degradability and degradation rate of organic matter (OM) in sacco, lower in vitro organic matter digestibility (IVOMD) and CP concentrations in the extrusa, and lower ammonia-N and branched-chain fatty acid concentrations in rumen fluid for the tropical grasses. As tropical grass pastures senesced, there was a decline in Edg, the ERDP and rumen undegradable protein (UDP) fractions, the potential degradability and degradation rate of OM and the IVOMD. These results provide useful data for estimating protein supply to cattle grazing tropical pastures.
Resumo:
An experiment using herds of similar to 20 cows (farmlets) assessed the effects of high stocking rates on production and profitability of feeding systems based on dryland and irrigated perennial ryegrass-based pastures in a Mediterranean environment in South Australia over 4 years. A target level of milk production of 7000 L/cow.year was set, based on predicted intakes of 2.7 t DM/cow.year as concentrates, pasture intakes from 1.5 to 2.7 t/cow.year and purchased fodder. In years 1 and 2, up to 1.5 t DM/cow.year of purchased fodder was used and in years 3 and 4 the amounts were increased if necessary to enable levels of milk production per cow to be maintained at target levels. Cows in dryland farmlets calved in March to May inclusive and were stocked at 2.5, 2.9, 3.3, 3.6 and 4.1 cows/ha, while those in irrigated farmlets calved in August to October inclusive and were stocked at 4.1, 5.2, 6.3 and 7.4 cows/ha. In the first 2 years, when inputs of purchased fodder were limited, milk production per cow was reduced with higher stocking rates (P < 0.01), but in years 3 and 4 there were no differences. Mean production was 7149 kg/cow.year in years 1 and 2, and 8162 kg/cow.year in years 3 and 4. Production per hectare was very closely related to stocking rate in all years (P < 0.01), increasing from 18 to 34 t milk/ha.year for dryland farmlets (1300 to 2200 kg milk solids/ha) and from 30 to 60 t milk/ha.year for irrigated farmlets (2200 to 4100 kg milk solids/ha). Almost all of these increases were attributed to the increases in grain and purchased fodder inputs associated with the increases in stocking rate. Net pasture accumulation rates and pasture harvest were generally not altered with stocking rate, though as stocking rate increased there was a change to more of the pasture being grazed and less conserved in both dryland and irrigated farmlets. Total pasture harvest averaged similar to 8 and 14 t DM/ha.year for dryland and irrigated pastures, respectively. An exception was at the highest stocking rate under irrigation, where pugging during winter was associated with a 14% reduction in annual pasture growth. There were several indications that these high stocking rates may not be sustainable without substantial changes in management practice. There were large and positive nutrient balances and associated increases in soil mineral content (P < 0.01), especially for phosphorus and nitrate nitrogen, with both stocking rate and succeeding years. Levels under irrigation were considerably higher (up to 90 and 240 mg/kg of soil for nitrate nitrogen and phosphorus, respectively) than under dryland pastures (60 and 140 mg/kg, respectively). Soil organic carbon levels did not change with stocking rate, indicating a high level of utilisation of forage grown. Weed ingress was also high (to 22% DM) in all treatments and especially in heavily stocked irrigated pastures during winter. It was concluded the higher stocking rates used exceeded those that are feasible for Mediterranean pastures in this environment and upper levels of stocking are suggested to be 2.5 cows/ha for dryland pastures and 5.2 cows/ha for irrigated pastures. To sustain these suggested stocking rates will require further development of management practices to avoid large increases in soil minerals and weed invasion of pastures.