943 resultados para pasture fertilization


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O trabalho foi conduzido na FCAV-Unesp, em Jaboticabal-SP, para avaliar os efeitos de quatro doses combinadas de NPK sobre os componentes da produção e das perdas de matéria seca (MS) em pastagens dos cultivares Tanzânia e Mombaça de Panicum maximum Jacq., manejadas com 28 dias de descanso e com altura média de 30 cm de resíduo pós-pastejo. As avaliações foram realizadas em parcelas de 96 m² segundo um fatorial 2 (cultivares) x 4 (doses de NPK), em blocos completos ao acaso, com três repetições. As adubações estudadas corresponderam ao decréscimo em 30 % e aos acréscimos em 30 e 60 % de uma dose padrão com 145; 21,6 e 180 kg/ha de N, P2O5 e K2O, respectivamente (referente a 1,2; a 0,08; e a 1,2 % de N, P e K na MS, com produção estimada em 12000 kg/ha). A MS verde (MSV) em pré-pastejo e no resíduo aumentou linearmente com a adubação, com maiores valores obtidos para o cv. Mombaça (9183 e 5227 kg/ha, respectivamente) do que para o cv. Tanzânia (6275 e 3808 kg/ha, respectivamente). A participação de lâminas foliares na MSV em pré-pastejo foi menor no cv. Tanzânia (51 %) do que no cv. Mombaça (54 %). A densidade de perfilhos não variou com a adubação. O aumento do peso de perfilho com a elevação das doses de NPK resultou em maiores produções de MSV. A MS senescida (média de 3108 kg/ha de MS) não diferiu entre cultivares. de modo geral, quanto maior a dose de adubo aplicado, maiores foram a taxa de acúmulo diário de MSV e a MSV perdida por pisoteio. O cv. Mombaça apresentou maior potencial de resposta à adubação do que o cv. Tanzânia, com taxas de lotação de 6,2 e 4,0 UA/ha, respectivamente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prepared in cooperation with Dept. of Animal Science, North Dakota Agricultural Experiment Station.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A utilização de fertilizante organomineral da indústria produtora dos aminoácidos lisina e treonina pode melhorar a fertilidade de solos tropicais. O presente trabalho teve como objetivo avaliar a influência de diferentes dosagens do fertilizante organomineral denominado Ajifer L-14 nos atributos químicos e no aumento de produção de forragem de um Latossolo Vermelho do noroeste paulista. O delineamento utilizado foi em blocos casualizados, com sete tratamentos e quatro repetições. Os tratamentos foram: T1- testemunha (sem aplicação de Ajifer L-14); T2- testemunha com vegetação natural; T3- adubação mineral de acordo com a necessidade da cultura e a análise do solo (usando 1,35 kg de ureia, 2,20 kg de superfosfato simples e 0,51 kg de KCl por parcela, o que corresponde a 60 kg de N, 40 kg de P2O5 e 30 kg ha-1 de K2O, respectivamente); T4- adubação com Ajifer L-14 de acordo com a recomendação da análise química do solo (40 L parcela-1, o que corresponde a 60 kg ha-1 N); T5- adubação com Ajifer L-14 em dosagem 50 % acima da recomendação (60 L parcela-1, o que corresponde a 90 kg ha-1 N; T6- adubação com Ajifer L-14 em dosagem 50 % abaixo da recomendação (20 L parcela-1, o que corresponde a 30 kg ha-1 N); T7- adubação com Ajifer L-14 em dosagem 25 % acima da recomendação (50 L parcela-1, o que corresponde a 75 kg ha-1 N); e T8- adubação com Ajifer L-14 em dosagem 25 % abaixo da recomendação (30 L parcela-1, o que corresponde a 45 kg ha-1 N). Nas profundidades de 0,0-0,1 e 0,1-0,2 m, avaliaram-se os seguintes atributos químicos do solo:, teor de matéria orgânica (MO), pH, K+, Ca2+, Mg2+, capacidade de troca catiônica (CTC), acidez potencial e saturação por bases. A aplicação do fertilizante organomineral não influenciou os atributos químicos do solo. Na análise de regressão, houve relação polinomial entre as doses de aplicação do fertilizante organomineral e a produção de massa seca e proteína bruta de Bracharia brizantha.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate dry matter yield and nutritional value of palisade grass (Brachiaria brizantha cv. Marandu) using nitrogen doses and sprinkler irrigation in two periods of the year, aiming at reducing seasonality of forage production. It was used a randomized block design in a split-plot scheme, with five doses of nitrogen (0, 50, 100, 150, and 200 kg/ha/cut), and the sub-plots were defined by the seasons of the year (wet and dry season), with and without irrigation. During the wet season, in the plots with and without irrigation, doses of 175 and 161 kg/ha/cut promoted the highest dry matter yields. During the dry season, 171 kg ha -1N with irrigation resulted in the highest dry matter yield. During the same season, there was no response to N fertilization in the lack of irrigation. Average contents of CP were 10% with and without irrigation. Contents of neutral detergent fiber decreased with nitrogen doses, while acid detergent fiber was not affected by fertilization. Plots under irrigation reached the maximal acid detergent fiber content at N dose of 60 kg ha -1. Irrigation promotes increase of 15% increase in dry matter yield and it increases contents of neutral detergent fiber. © 2010 Sociedade Brasileira de Zootecnia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to evaluate the concentrations of non-structural carbohydrate (NSC) and of total nitrogen (N), as well as, to evaluate the root system in Tanzania-grass pastures fertilized with doses of urea in fall, spring and summer. The experiment was conducted at the Experimental Farm of Iguatemi, Maringa, Parana, Brazil, from March 2007 to March 2008. The experimental design was complete random blocks with subplots and four repetitions. The plots showed doses of N (50, 100 e 150 kg ha(-1) of N) plus the control (no N fertilization), and the subplots the season of the year. Root samples were taken at depths of 0-10, 10-20 and 20-40 cm. Root biomass showed a trend for mass accumulation up to a dosage of 100 kg ha(-1) for all seasons evaluated. Also, about 80% of the root system of Tanzaniagrass plants was found on the 0-10 cm layer for all dosages of N. Nitrogen fertilizer above 100 kg ha(-1) may foster fast forage plant growth reducing its NSC root storage capacity although favoring NSC and total N storage at stem base. NSC and total N concentrations were highest in fall, demonstrating that its usage is greater in spring due to the weather conditions being favorable to plant growth. In the regrowth, the largest reserve of total N was at the 0-10 cm root layer and the largest NSC reserve is at stem base.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil sulfur (S) partitioning among the various pools and changes in tropical pasture ecosystems remain poorly understood. Our study aimed to investigate the dynamics and distribution of soil S fractions in an 8-year-old signal grass (Brachiaria decumbens Stapf.) pasture fertilized with nitrogen (N) and S. A factorial combination of two N rates (0 and 600?kg N ha1 y1, as NH4NO3) and two S rates (0 and 60?kg S ha1 y1, as gypsum) were applied to signal grass pastures during 2 y. Cattle grazing was controlled during the experimental period. Organic S was the major S pool found in the tropical pasture soil, and represented 97% to 99% of total S content. Among the organic S fractions, residual S was the most abundant (42% to 67% of total S), followed by ester-bonded S (19% to 42%), and C-bonded S (11% to 19%). Plant-available inorganic SO4-S concentrations were very low, even for the treatments receiving S fertilizers. Low inorganic SO4-S stocks suggest that S losses may play a major role in S dynamics of sandy tropical soils. Nitrogen and S additions affected forage yield, S plant uptake, and organic S fractions in the soil. Among the various soil fractions, residual S showed the greatest changes in response to N and S fertilization. Soil organic S increased in plots fertilized with S following the residual S fraction increment (16.6% to 34.8%). Soils cultivated without N and S fertilization showed a decrease in all soil organic S fractions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient inputs into ecosystems of the tropical mountain rainforest region are projected to further increase in the next decades. To investigate whether important ecosystem services such as nutrient cycling and matter turnover in native forests and pasture ecosystems show different patterns of response, two nutrient addition experiments have been established: NUMEX in the forest and FERPAST at the pasture. Both ecosystems already responded 1.5 years after the start of nutrient application (N, P, NP, Ca). Interestingly, most nutrients remained in the respective systems. While the pasture grass was co-limited by N and P, most tree species responded to P addition. Soil microbial biomass in the forest litter layer increased after NP fertilization pointing to nutrient co-limitation. In pasture soils, microorganisms were neither limited by N nor P. The results support the hypothesis that multiple and temporally variable nutrient limitations can coexist in tropical ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gas emissions from a well established, unfertilized tropical grass-legume pasture were monitored over two consecutive years using high resolution automatic sampling. Nitrous oxide emissions were highest during the summer months and were highly episodic, related more to the size and distribution of rain events than WFPS alone. Mean annual emissions were significantly higher during 2008 (5.7 ± 1.0 g N2O-N/ha/day) than 2007 (3.9 ± 0.4 and g N2O-N/ha/day) despite receiving nearly 500 mm less rain. Mean CO2 (28.2 ± 1.5 kg CO2 C/ha/day) was not significantly different (P < 0.01) between measurement years, emissions being highly dependent on temperature. A negative correlation between CO2 and WFPS at >70% indicated a threshold for soil conditions favouring denitrification. The use of automatic chambers for high resolution greenhouse gas sampling can greatly reduce emission estimation errors associated with temperature and WFPS changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250-2,000 mum) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.