986 resultados para particle number


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of particle emission characteristics associated with forest fires and in general, biomass burning, is becoming increasingly important due to the impact of these emissions on human health. Of particular importance is developing a better understanding of the size distribution of particles generated from forest combustion under different environmental conditions, as well as provision of emission factors for different particle size ranges. This study was aimed at quantifying particle emission factors from four types of wood found in South East Queensland forests: Spotted Gum (Corymbia citriodora), Red Gum (Eucalypt tereticornis), Blood Gum (Eucalypt intermedia), and Iron bark (Eucalypt decorticans); under controlled laboratory conditions. The experimental set up included a modified commercial stove connected to a dilution system designed for the conditions of the study. Measurements of particle number size distribution and concentration resulting from the burning of woods with a relatively homogenous moisture content (in the range of 15 to 26 %) and for different rates of burning were performed using a TSI Scanning Mobility Particle Sizer (SMPS) in the size range from 10 to 600 nm and a TSI Dust Trak for PM2.5. The results of the study in terms of the relationship between particle number size distribution and different condition of burning for different species show that particle number emission factors and PM2.5 mass emission factors depend on the type of wood and the burning rate; fast burning or slow burning. The average particle number emission factors for fast burning conditions are in the range of 3.3 x 1015 to 5.7 x 1015 particles/kg, and for PM2.5 are in the range of 139 to 217 mg/kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of submicrometre (< 1.0 m) and ultrafine particles (diameter < 0.1 m) number concentration have attracted attention since the last decade because the potential health impacts associated with exposure to these particles can be more significant than those due to exposure to larger particles. At present, ultrafine particles are not regularly monitored and they are yet to be incorporated into air quality monitoring programs. As a result, very few studies have analysed their long-term and spatial variations in ultrafine particle concentration, and none have been in Australia. To address this gap in scientific knowledge, the aim of this research was to investigate the long-term trends and seasonal variations in particle number concentrations in Brisbane, Australia. Data collected over a five-year period were analysed using weighted regression models. Monthly mean concentrations in the morning (6:00-10:00) and the afternoon (16:00-19:00) were plotted against time in months, using the monthly variance as the weights. During the five-year period, submicrometre and ultrafine particle concentrations increased in the morning by 105.7% and 81.5% respectively whereas in the afternoon there was no significant trend. The morning concentrations were associated with fresh traffic emissions and the afternoon concentrations with the background. The statistical tests applied to the seasonal models, on the other hand, indicated that there was no seasonal component. The spatial variation in size distribution in a large urban area was investigated using particle number size distribution data collected at nine different locations during different campaigns. The size distributions were represented by the modal structures and cumulative size distributions. Particle number peaked at around 30 nm, except at an isolated site dominated by diesel trucks, where the particle number peaked at around 60 nm. It was found that ultrafine particles contributed to 82%-90% of the total particle number. At the sites dominated by petrol vehicles, nanoparticles (< 50 nm) contributed 60%-70% of the total particle number, and at the site dominated by diesel trucks they contributed 50%. Although the sampling campaigns took place during different seasons and were of varying duration these variations did not have an effect on the particle size distributions. The results suggested that the distributions were rather affected by differences in traffic composition and distance to the road. To investigate the occurrence of nucleation events, that is, secondary particle formation from gaseous precursors, particle size distribution data collected over a 13 month period during 5 different campaigns were analysed. The study area was a complex urban environment influenced by anthropogenic and natural sources. The study introduced a new application of time series differencing for the identification of nucleation events. To evaluate the conditions favourable to nucleation, the meteorological conditions and gaseous concentrations prior to and during nucleation events were recorded. Gaseous concentrations did not exhibit a clear pattern of change in concentration. It was also found that nucleation was associated with sea breeze and long-range transport. The implications of this finding are that whilst vehicles are the most important source of ultrafine particles, sea breeze and aged gaseous emissions play a more important role in secondary particle formation in the study area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor vehicles are major emitters of gaseous and particulate pollution in urban areas, and exposure to particulate pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle tailpipe particle emissions span a broad size range from 0.003-10µm, and are measured as different subsets of particle mass concentrations or particle number count. However, no comprehensive inventories currently exist in the international published literature covering this wide size range. This paper presents the first published comprehensive inventory of motor vehicle tailpipe particle emissions covering the full size range of particles emitted. The inventory was developed for urban South-East Queensland by combining two techniques from distinctly different disciplines, from aerosol science and transport modelling. A comprehensive set of particle emission factors were combined with traffic modelling, and tailpipe particle emissions were quantified for particle number (ultrafine particles), PM1, PM2.5 and PM10 for light and heavy duty vehicles and buses. A second aim of the paper involved using the data derived in this inventory for scenario analyses, to model the particle emission implications of different proportions of passengers travelling in light duty vehicles and buses in the study region, and to derive an estimate of fleet particle emissions in 2026. It was found that heavy duty vehicles (HDVs) in the study region were major emitters of particulate matter pollution, and although they contributed only around 6% of total regional vehicle kilometres travelled, they contributed more than 50% of the region’s particle number (ultrafine particles) and PM1 emissions. With the freight task in the region predicted to double over the next 20 years, this suggests that HDVs need to be a major focus of mitigation efforts. HDVs dominated particle number (ultrafine particles) and PM1 emissions; and LDV PM2.5 and PM10 emissions. Buses contributed approximately 1-2% of regional particle emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assess the increase in particle number emissions from motor vehicles driving at steady speed when forced to stop and accelerate from rest. Considering the example of a signalized pedestrian crossing on a two-way single-lane urban road, we use a complex line source method to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses and show that the total emissions during a red light is significantly higher than during the time when the light remains green. Replacing two cars with one bus increased the emissions by over an order of magnitude. Considering these large differences, we conclude that the importance attached to particle number emissions in traffic management policies be reassessed in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motor vehicles are a major source of gaseous and particulate matter pollution in urban areas, particularly of ultrafine sized particles (diameters < 0.1 µm). Exposure to particulate matter has been found to be associated with serious health effects, including respiratory and cardiovascular disease, and mortality. Particle emissions generated by motor vehicles span a very broad size range (from around 0.003-10 µm) and are measured as different subsets of particle mass concentrations or particle number count. However, there exist scientific challenges in analysing and interpreting the large data sets on motor vehicle emission factors, and no understanding is available of the application of different particle metrics as a basis for air quality regulation. To date a comprehensive inventory covering the broad size range of particles emitted by motor vehicles, and which includes particle number, does not exist anywhere in the world. This thesis covers research related to four important and interrelated aspects pertaining to particulate matter generated by motor vehicle fleets. These include the derivation of suitable particle emission factors for use in transport modelling and health impact assessments; quantification of motor vehicle particle emission inventories; investigation of the particle characteristic modality within particle size distributions as a potential for developing air quality regulation; and review and synthesis of current knowledge on ultrafine particles as it relates to motor vehicles; and the application of these aspects to the quantification, control and management of motor vehicle particle emissions. In order to quantify emissions in terms of a comprehensive inventory, which covers the full size range of particles emitted by motor vehicle fleets, it was necessary to derive a suitable set of particle emission factors for different vehicle and road type combinations for particle number, particle volume, PM1, PM2.5 and PM1 (mass concentration of particles with aerodynamic diameters < 1 µm, < 2.5 µm and < 10 µm respectively). The very large data set of emission factors analysed in this study were sourced from measurement studies conducted in developed countries, and hence the derived set of emission factors are suitable for preparing inventories in other urban regions of the developed world. These emission factors are particularly useful for regions with a lack of measurement data to derive emission factors, or where experimental data are available but are of insufficient scope. The comprehensive particle emissions inventory presented in this thesis is the first published inventory of tailpipe particle emissions prepared for a motor vehicle fleet, and included the quantification of particle emissions covering the full size range of particles emitted by vehicles, based on measurement data. The inventory quantified particle emissions measured in terms of particle number and different particle mass size fractions. It was developed for the urban South-East Queensland fleet in Australia, and included testing the particle emission implications of future scenarios for different passenger and freight travel demand. The thesis also presents evidence of the usefulness of examining modality within particle size distributions as a basis for developing air quality regulations; and finds evidence to support the relevance of introducing a new PM1 mass ambient air quality standard for the majority of environments worldwide. The study found that a combination of PM1 and PM10 standards are likely to be a more discerning and suitable set of ambient air quality standards for controlling particles emitted from combustion and mechanically-generated sources, such as motor vehicles, than the current mass standards of PM2.5 and PM10. The study also reviewed and synthesized existing knowledge on ultrafine particles, with a specific focus on those originating from motor vehicles. It found that motor vehicles are significant contributors to both air pollution and ultrafine particles in urban areas, and that a standardized measurement procedure is not currently available for ultrafine particles. The review found discrepancies exist between outcomes of instrumentation used to measure ultrafine particles; that few data is available on ultrafine particle chemistry and composition, long term monitoring; characterization of their spatial and temporal distribution in urban areas; and that no inventories for particle number are available for motor vehicle fleets. This knowledge is critical for epidemiological studies and exposure-response assessment. Conclusions from this review included the recommendation that ultrafine particles in populated urban areas be considered a likely target for future air quality regulation based on particle number, due to their potential impacts on the environment. The research in this PhD thesis successfully integrated the elements needed to quantify and manage motor vehicle fleet emissions, and its novelty relates to the combining of expertise from two distinctly separate disciplines - from aerosol science and transport modelling. The new knowledge and concepts developed in this PhD research provide never before available data and methods which can be used to develop comprehensive, size-resolved inventories of motor vehicle particle emissions, and air quality regulations to control particle emissions to protect the health and well-being of current and future generations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressed natural gas (CNG) engines are thought to be less harmful to the environment than conventional diesel engines, especially in terms of particle emissions. Although, this is true with respect to particulate matter (PM) emissions, results of particle number (PN) emission comparisons have been inconclusive. In this study, results of on-road and dynamometer studies of buses were used to derive several important conclusions. We show that, although PN emissions from CNG buses are significantly lower than from diesel buses at low engine power, they become comparable at high power. For diesel buses, PN emissions are not significantly different between acceleration and operation at steady maximum power. However, the corresponding PN emissions from CNG buses when accelerating are an order of magnitude greater than when operating at steady maximum power. During acceleration under heavy load, PN emissions from CNG buses are an order of magnitude higher than from diesel buses. The particles emitted from CNG buses are too small to contribute to PM10 emissions or contribute to a reduction of visibility, and may consist of semivolatile nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background, Aim and Scope The impact of air pollution on school children’s health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. Materials and methods In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM2.5), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. Results For outdoor PN and PM2.5, early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM2.5 and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM2.5 level was mainly affected by the outdoor PM2.5 (r = 0.68, p<0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p<0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM2.5 was inversely correlated with the indoor to outdoor PM2.5 ratio (I/O ratio) (r = -0.49, p<0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p<0.01). Discussion and Conclusions The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100 – 400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM2.5 was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. Recommendations and Perspectives The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimizing the adverse health effects on school children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to quantify exposure to particles emitted by wood-fired ovens in pizzerias. Overall, 15 microenvironments were chosen and analyzed in a 14-month experimental campaign. Particle number concentration and distribution were measured simultaneously using a Condensation Particle Counter (CPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). The surface area and mass distributions and concentrations, as well as the estimation of lung deposition surface area and PM1 were evaluated using the SMPS-APS system with dosimetric models, by taking into account the presence of aggregates on the basis of the Idealized Aggregate (IA) theory. The fraction of inhaled particles deposited in the respiratory system and different fractions of particulate matter were also measured by means of a Nanoparticle Surface Area Monitor (NSAM) and a photometer (DustTrak DRX), respectively. In this way, supplementary data were obtained during the monitoring of trends inside the pizzerias. We found that surface area and PM1 particle concentrations in pizzerias can be very high, especially when compared to other critical microenvironments, such as the transport hubs. During pizza cooking under normal ventilation conditions, concentrations were found up to 74, 70 and 23 times higher than background levels for number, surface area and PM1, respectively. A key parameter is the oven shape factor, defined as the ratio between the size of the face opening in respect

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An elevated particle number concentration (PNC) observed during nucleation events could play a significant contribution to the total particle load and therefore to the air pollution in the urban environments. Therefore, a field measurement study of PNC was commenced to investigate the temporal and spatial variations of PNC within the urban airshed of Brisbane, Australia. PNC was monitored at urban (QUT), roadside (WOO) and semi-urban (ROC) areas around the Brisbane region during 2009. During the morning traffic peak period, the highest relative fraction of PNC reached about 5% at QUT and WOO on weekdays. PNC peaks were observed around noon, which correlated with the highest solar radiation levels at all three stations, thus suggesting that high PNC levels were likely to be associated with new particle formation caused by photochemical reactions. Wind rose plots showed relatively higher PNC for the NE direction, which was associated with industrial pollution, accounting for 12%, 9% and 14% of overall PNC at QUT, WOO and ROC, respectively. Although there was no significant correlation between PNC at each station, the variation of PNC was well correlated among three stations during regional nucleation events. In addition, PNC at ROC was significantly influenced by upwind urban pollution during the nucleation burst events, with the average enrichment factor of 15.4. This study provides an insight into the influence of regional nucleation events on PNC in the Brisbane region and it the first study to quantify the effect of urban pollution on semi-urban PNC through the nucleation events. © 2012 Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantifying spatial and/or temporal trends in environmental modelling data requires that measurements be taken at multiple sites. The number of sites and duration of measurement at each site must be balanced against costs of equipment and availability of trained staff. The split panel design comprises short measurement campaigns at multiple locations and continuous monitoring at reference sites [2]. Here we present a modelling approach for a spatio-temporal model of ultrafine particle number concentration (PNC) recorded according to a split panel design. The model describes the temporal trends and background levels at each site. The data were measured as part of the “Ultrafine Particles from Transport Emissions and Child Health” (UPTECH) project which aims to link air quality measurements, child health outcomes and a questionnaire on the child’s history and demographics. The UPTECH project involves measuring aerosol and particle counts and local meteorology at each of 25 primary schools for two weeks and at three long term monitoring stations, and health outcomes for a cohort of students at each school [3].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is significant toxicological evidence of the effects of ultrafine particles (<100nm) on human health (WHO 2005). Studies show that the number concentration of particles has been associated with adverse human health effects (Englert 2004). This work is part of a major study called ‘Ultrafine Particles form Traffic Emissions and Children’s Health’ (UPTECH), which seeks to determine the effect of the exposure to traffic related ultrafine particles on children’s health in schools (http://www.ilaqh.qut.edu.au/Misc/UPT ECH%20Home.htm). Quantification of spatial variation of particle number concentration (PNC) in a microscale environment and identification of the main affecting parameters and their contribution levels are the main aims of this analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation, as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3 and therefore, CV was corrected so that only non-instrument uncertainty was analysed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as one order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and non-parametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CVc, and therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis developed semi-parametric regression models for estimating the spatio-temporal distribution of outdoor airborne ultrafine particle number concentration (PNC). The models developed incorporate multivariate penalised splines and random walks and autoregressive errors in order to estimate non-linear functions of space, time and other covariates. The models were applied to data from the "Ultrafine Particles from Traffic Emissions and Child" project in Brisbane, Australia, and to longitudinal measurements of air quality in Helsinki, Finland. The spline and random walk aspects of the models reveal how the daily trend in PNC changes over the year in Helsinki and the similarities and differences in the daily and weekly trends across multiple primary schools in Brisbane. Midday peaks in PNC in Brisbane locations are attributed to new particle formation events at the Port of Brisbane and Brisbane Airport.