891 resultados para partially coherent source


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed quantitative numerical analysis of partially coherent quasi-CW fiber laser is performed on the example of high-Q cavity Raman fiber laser. The key role of precise spectral performances of fiber Bragg gratings forming the laser cavity is clarified. It is shown that cross phase modulation between the pump and Stokes waves does not affect the generation. Amplitudes of different longitudinal modes strongly fluctuate obeying the Gaussian distribution. As intensity statistics is noticeably non-exponential, longitudinal modes should be correlated. © 2011 SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vasoconstrictor peptide, neuropeptide Y (NPY), is present in perivascular noradrenergic neurons of all mammals studied and may be important in the regulation of blood pressure. High plasma levels of NPY have been measured in the rat. To investigate partially the source and factors controlling the release of the circulating peptide, the effect of pentolinium tartrate administration has been studied in conscious rats. Pentolinium given as a bolus (5 mg/kg) followed by an infusion of a further 5 mg/kg/30 min produced a highly significant reduction in blood pressure of more than 40 mm Hg, when compared to either basal values or control animals treated with saline. Pentolinium treatment resulted in significantly lower plasma neuropeptide Y levels (31.0 +/- 6.7 fmol/ml) compared with those of control animals (78.6 +/- 8.2 fmol/ml). Circulating catecholamines were also significantly reduced in those animals receiving pentolinium. These results are compatible with circulating NPY arising from the sympathetic nervous system, with release being controlled by the mechanisms already established for catecholamines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new formal approach for representation of polarization states of coherent and partially coherent electromagnetic plane waves is presented. Its basis is a purely geometric construction for the normalised complex-analytic coherent wave as a generating line in the sphere of wave directions, and whose Stokes vector is determined by the intersection with the conjugate generating line. The Poincare sphere is now located in physical space, simply a coordination of the wave sphere, its axis aligned with the wave vector. Algebraically, the generators representing coherent states are represented by spinors, and this is made consistent with the spinor-tensor representation of electromagnetic theory by means of an explicit reference spinor we call the phase flag. As a faithful unified geometric representation, the new model provides improved formal tools for resolving many of the geometric difficulties and ambiguities that arise in the traditional formalism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis proposes design methods and test tools, for optical systems, which may be used in an industrial environment, where not only precision and reliability but also ease of use is important. The approach to the problem has been conceived to be as general as possible, although in the present work, the design of a portable device for automatic identification applications has been studied, because this doctorate has been funded by Datalogic Scanning Group s.r.l., a world-class producer of barcode readers. The main functional components of the complete device are: electro-optical imaging, illumination and pattern generator systems. For what concerns the electro-optical imaging system, a characterization tool and an analysis one has been developed to check if the desired performance of the system has been achieved. Moreover, two design tools for optimizing the imaging system have been implemented. The first optimizes just the core of the system, the optical part, improving its performance ignoring all other contributions and generating a good starting point for the optimization of the whole complex system. The second tool optimizes the system taking into account its behavior with a model as near as possible to reality including optics, electronics and detection. For what concerns the illumination and the pattern generator systems, two tools have been implemented. The first allows the design of free-form lenses described by an arbitrary analytical function exited by an incoherent source and is able to provide custom illumination conditions for all kind of applications. The second tool consists of a new method to design Diffractive Optical Elements excited by a coherent source for large pattern angles using the Iterative Fourier Transform Algorithm. Validation of the design tools has been obtained, whenever possible, comparing the performance of the designed systems with those of fabricated prototypes. In other cases simulations have been used.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Turbulence affects traditional free space optical communication by causing speckle to appear in the received beam profile. This occurs due to changes in the refractive index of the atmosphere that are caused by fluctuations in temperature and pressure, resulting in an inhomogeneous medium. The Gaussian-Schell model of partial coherence has been suggested as a means of mitigating these atmospheric inhomogeneities on the transmission side. This dissertation analyzed the Gaussian-Schell model of partial coherence by verifying the Gaussian-Schell model in the far-field, investigated the number of independent phase control screens necessary to approach the ideal Gaussian-Schell model, and showed experimentally that the Gaussian-Schell model of partial coherence is achievable in the far-field using a liquid crystal spatial light modulator. A method for optimizing the statistical properties of the Gaussian-Schell model was developed to maximize the coherence of the field while ensuring that it does not exhibit the same statistics as a fully coherent source. Finally a technique to estimate the minimum spatial resolution necessary in a spatial light modulator was developed to effectively propagate the Gaussian-Schell model through a range of atmospheric turbulence strengths. This work showed that regardless of turbulence strength or receiver aperture, transmitting the Gaussian-Schell model of partial coherence instead of a fully coherent source will yield a reduction in the intensity fluctuations of the received field. By measuring the variance of the intensity fluctuations and the received mean, it is shown through the scintillation index that using the Gaussian-Schell model of partial coherence is a simple and straight forward method to mitigate atmospheric turbulence instead of traditional adaptive optics in free space optical communications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Focusing optical beams on a target through random propagation media is very important in many applications such as free space optical communica- tions and laser weapons. Random media effects such as beam spread and scintillation can degrade the optical system's performance severely. Compensation schemes are needed in these applications to overcome these random media effcts. In this research, we investigated the optimal beams for two different optimization criteria: one is to maximize the concentrated received intensity and the other is to minimize the scintillation index at the target plane. In the study of the optimal beam to maximize the weighted integrated intensity, we derive a similarity relationship between pupil-plane phase screen and extended Huygens-Fresnel model, and demonstrate the limited utility of maximizing the average integrated intensity. In the study ofthe optimal beam to minimize the scintillation index, we derive the first- and second-order moments for the integrated intensity of multiple coherent modes. Hermite-Gaussian and Laguerre-Gaussian modes are used as the coherent modes to synthesize an optimal partially coherent beam. The optimal beams demonstrate evident reduction of scintillation index, and prove to be insensitive to the aperture averaging effect.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show how to convert between partially coherent superpositions of a single photon with the vacuum by using linear optics and postselection based on homodyne measurements. We introduce a generalized quantum efficiency for such states and show that any conversion that decreases this quantity is possible. We also prove that our scheme is optimal by showing that no linear optical scheme with generalized conditional measurements, and with one single-rail qubit input, can improve the generalized efficiency. (c) 2006 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The basis of the present authors' edge-to-edge matching model for understanding the crystallography of partially coherent precipitates is the minimization of the energy of the interface between the two phases. For relatively simple crystal structures, this energy minimization occurs when close-packed, or relatively close-packed, rows of atoms match across the interface. Hence, the fundamental principle behind edge-to-edge matching is that the directions in each phase that correspond to the edges of the planes that meet in the interface should be close-packed, or relatively close-packed, rows of atoms. A few of the recently reported examples of what is termed edge-to-edge matching appear to ignore this fundamental principle. By comparing theoretical predictions with available experimental data, this article will explore the validity of this critical atom-row coincidence condition, in situations where the two phases have simple crystal Structures and in those where the precipitate has a more complex structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce the concept of noncoherent optical pulse discrimination from a coherent (or partially coherent) signal of the same energy using the phenomenon of soliton generation. The impact of randomization of the optical signal content on the observable characteristics of soliton generation is examined and quantified for the particular example of a rectangular pulse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the numerical study of the statistical properties of the partially coherent quasi-CW high-Q cavity Raman fiber laser. The statistical properties are different for the radiation generated at the spectrum center or spectral wings. It is found that rare extreme events are generated at the far spectral wings at one pass only. The mechanism of the extreme events generation is a turbulent-like four-wave mixing of numerous longitudinal generation modes. The similar mechanism of extreme waves appearance during the laser generation could be important in other types of fiber lasers. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient numerical modelling of the power, spectral and statistical properties of partially coherent quasi-CW Raman fiber laser radiation is presented. XPM between pump wave and generated Stokes wave is not important in the generation spectrum broadening and XPM term can be omitted in propagation equation what sufficiently speeds-up simulations. The time dynamics of Raman fiber laser (RFL) is stochastic exhibiting events several times more intense that the mean value on the ps timescale. However, the RFL has different statistical properties on different time scales. The probability density function of spectral power density is exponential for the generation modes located either in the spectrum centre or spectral wings while the phases are distributed uniformly. The pump wave preserves the initial Gaussian statistics during propagation in the laser cavity. Intense pulses in the pump wave are evolved under the SPM influence and are not disturbed by the dispersion. Contrarily, in the generated wave the dispersion plays a significant role that results in stochastic behavior. © 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the numerical study of the statistical properties of the partially coherent quasi-CW high-Q cavity Raman fiber laser. The statistical properties are different for the radiation generated at one or many cavity passes. It is found that rare extreme events are generated at the far spectral wings of the spectrum. The mechanism of the extreme events generation is a turbulent-like four-wave mixing of numerous longitudinal generation modes. © 2011 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesozoic and Neogene carbonates located in the Valencia Trough (offshore Spain, western Mediterranean Sea)are oil reservoirs. This paper investigates the diagenetic evolution of the Upper Jurassic limestones, currently dolomitized, that constitute the main reservoir of the Casablanca oil field. Core samples from Casablanca-1A well have been studied to determine the diagenetic products and their relation with porosity evolution, and to reconstruct the fluid flow history prior to and during oil emplacement. On the basis of petrological observations and geochemical analyses (major, minor and trace element composition and oxygen, carbon and strontium isotope composition), a major dolomitization event is recognized postdating subaerial exposure, erosion and karstification. The dolomitization event originated two replacive dolomites (RD1 and RD2) and two dolomite cements (saddle dolomite cement, SDC, and milky-white dolomite cement, MDC)which are partially cogenetic. RD1, RD2 and SDC precipitated at increasing temperatures (over 60ºC and below 110ºC), probably from meteoric water mixed with marine water. The last dolomite type milky-white dolomite cement) precipitated with increasing burial conditions and by arrival of hydrothermal fluids during the Miocene. The post-dolomitization sequence comprises precipitation of calcite cement and partial calcitization of all previous dolomites. The oxygen, carbon and strontium isotope compositions suggest that this calcite cementation occurred from meteoric waters mixed with Burdigalian - Langhian marine waters trapped in the sediments and expelled by compaction in the moderate to deep burial realm. Normal faults were the conduits for upward migration of these fluids as well as for later oil expulsion from the Burdigalian - Langhian source rocks. Late corrosion associated with organic acid-enriched fluids took place prior or simultaneously to oil migration during the Pliocene, enhancing porosity and increasing eservoir quality.