948 resultados para partial fixed denture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 41-year-old man with cleft palate presented with a wide dehiscence and missing teeth. Six implants had been placed for fabrication of an overdenture, which was unsatisfactory. A bar was waxed and cast for connection to the implants; precision attachments were placed laterally for retention. A fixed partial denture was fabricated, and milled crowns were fabricated at the molar region to provide a guiding plane for insertion of a removable palatal obturator. Good swallowing and speech outcomes were achieved. This technique provided functional and esthetic benefits, enhanced oral hygiene, and improved the psychological condition of the patient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n = 5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 με) and point D the highest (442.77 με). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n=5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 mu epsilon) and point D the highest (442.77 mu epsilon). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this in vitro study was to use strain gauge (SG) analysis to compare the effects of the implant-abutment joint, the coping, and the location of load on strain distribution in the bone around implants supporting 3-unit fixed partial prostheses. Three external hexagon (EH) implants and 3 internal hexagon (IH) implants were inserted into 2 polyurethane blocks. Microunit abutments were screwed onto their respective implant groups. Machined cobalt-chromium copings and plastic copings were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in a cobalt-chromium alloy (n = 5): group 1 = EH/machined. group 2 = EH/plastic, group 3 = IH/machined, and group 4 = IH/plastic. Four SGs were bonded onto the surface of the block tangentially to the implants. Each metallic structure was screwed onto the abutments and an axial load of 30 kg was applied at 5 predetermined points. The magnitude of microstrain on each SG was recorded in units of microstrain (mu epsilon). The data were analyzed using 3-factor repeated measures analysis of variance and a Tukey test (alpha = 0.05). The results showed statistically significant differences for the type of implant-abutment joint, loading point, and interaction at the implant-abutment joint/loading point. The IH connection showed higher microstrain values than the EH connection. It was concluded that the type of coping did not interfere in the magnitude of microstrain, but the implant/abutment joint and axial loading location influenced this magnitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cementation procedure of metal-free fixed partial dentures exhibits special characteristics about the porcelains and cementation agents, which turns the correct association between these materials necessary. Our purpose in this literature review was to point the main groups of cements associated to metal-free restoration and discuss about the advantages, disadvantages, and recommendations of each one. Our search was confined to the electronic databases PubMed and SciELO and to books about this matter. There are essentially 3 types of hard cement: conventional, resin, or a hybrid of the two. The metal-free restorations can be fixed with conventional or resin cements. The right choice of luting material is of vital importance to the longevity of dental restorative materials. Conventional cements are advantageous when good compressive straight, good film thickness, and water dissolution resistance are necessary. However, they need an ideal preparation, and they are not acid dissolution resistant. Conventional cements are indicated to porcelains that cannot be acid etched. Resin cements represent the choice to metal-free restoration cementation because they present better physical properties and aesthetic than conventional agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tooth replacement in the maxillary anterior region is especially difficult when the loss includes significant amounts of the residual ridge and the soft tissue. Several techniques are available, such as dental implants or fixed partial denture, and bone and gingival grafts or gingival prostheses, respectively. This article showed a clinical case of an elderly who was treated with a collarless metal-ceramic fixed partial denture and acrylic removable gingival prosthesis to recover the esthetics in the maxillary anterior region. The association of a metal-ceramic fixed denture and gingival prosthesis was an excellent alternative in cases when surgical procedures are contraindicated. © 2012 Japan Prosthodontic Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element analysis was used to compare the effect of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible. Four models of an human mandible were constructed. In the OR (O'ring) group, the mandible was restored with an overdenture retained by four unsplinted implants with O'ring attachment; in the BC (bar-clip) -C and BC groups, the mandibles were restored with overdentures retained by four splinted implants with bar-clip anchor associated or not with two distally placed cantilevers, respectively; in the FD (fixed denture) group, the mandible was restored with a fixed full-arch four-implant-supported prosthesis. Models were supported by the masticatory muscles and temporomandibular joints. A 100-N oblique load was applied on the left first molar. Von Mises (σvM), maximum (σmax) and minimum (σmin) principal stresses (in MPa) analyses were obtained. BC-C group exhibited the highest stress values (σvM=398.8, σmax=580.5 and σmin=-455.2) while FD group showed the lowest one (σvM=128.9, σmax=185.9 and σmin=-172.1). Within overdenture groups, the use of unsplinted implants reduced the stress level in the implant/prosthetic components (59.4% for σvM, 66.2% for σmax and 57.7% for σmin versus BC-C group) and supporting tissues (maximum stress reduction of 72% and 79.5% for σmax, and 15.7% and 85.7% for σmin on the cortical and trabecular bones, respectively). Cortical bone exhibited greater stress concentration than the trabecular bone for all groups. The use of fixed implant dentures and removable dentures retained by unsplinted implants to rehabilitate edentulous mandible reduced the stresses in the periimplant bone tissue, mucosa and implant/prosthetic components. © 2013 Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prosthetic restorations that have been tried in the patient's mouth are potential sources of infection. In order to avoid cross-infection, protocols for infection control should be established in dental office and laboratory. This study evaluated the antimicrobial efficacy of disinfectants on full metal crowns contaminated with microorganisms. Full crowns cast in a Ni-Cr alloy were assigned to one control group (n=6) and 5 experimental groups (n=18). The crowns were placed in flat-bottom glass balloons and were autoclaved. A microbial suspension of each type of strain - S. aureus, P. aeruginosa, S. mutans, E. faecalis and C. albicans- was aseptically added to each experimental group, the crowns being allowed for contamination during 30 min. The contaminated specimens were placed into recipients with the chemical disinfectants (1% and 2% sodium hypochlorite and 2% glutaraldehyde) for 5, 10 and 15 min. Thereafter, the crowns were placed into tubes containing different broths and incubated at 35ºC. The control specimens were contaminated, immersed in distilled water for 20 min and cultured in Thioglycollate broth at 35ºC. Microbial growth assay was performed by qualitative visual examination after 48 h, 7 and 12 days. Microbial growth was noticed only in the control group. In the experimental groups, turbidity of the broths was not observed, regardless of the strains and immersion intervals, thus indicating absence of microbial growth. In conclusion, all chemical disinfectants were effective in preventing microbial growth onto full metal crowns.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The authors analysed the simultaneous effects of the dimensional and weight alteration of resins utilized for esthetic facets submitted to warehousing conditions and periods of time. The resins showed different behaviour and a neat correlation between dimensional alteration and weight. The condition of immersion promoted dimensional alteration 50% lower and an alteration of weight three times higher.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this study was to compare the enamel/resin/metal bond tensile strength by using human canines, in which castings were bonded. These castings were obtained by Co-Cr or Ni-Cr alloys and showed four types of mechanisms of retention: 50 micrograms aluminum oxide abrasive, electrochemical etch, acrylic beads metal mesh. The castings were bonded utilizing Comspan Opaque and Panavia Ex. The specimens were subjected to tensile forces after 24 hours in an Instron machine. The castings subjected to 50 micrograms aluminum oxide abrasive and bonded utilizing Panavia EX showed the biggest bond tensile strength.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods: Metallic frameworks (25 mm × 3 mm × 0.5 mm) (N = 96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 μm aluminum oxide at the central area of the frameworks (8 mm × 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: 1 mm). The specimens from each ceramic-metal combination (N = 96, n = 12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 °C for 24 h (control group), thermal cycling (3000 cycles, between 4 and 55 °C, dwell time: 10 s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 °C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey's test (α = 0.05). Results: The mean flexural strength values for the ceramic-gold alloy combination (55 ± 7.2 MPa) were significantly higher than those of the ceramic-Ti cp combination (32 ± 6.7 MPa) regardless of the fatigue conditions performed (p < 0.05). Mechanical and thermo-mechanical fatigue decreased the flexural strength results significantly for both ceramic-gold alloy (52 ± 6.6 and 53 ± 5.6 MPa, respectively) and ceramic-Ti cp combinations (29 ± 6.8 and 29 ± 6.8 MPa, respectively) compared to the control group (58 ± 7.8 and 39 ± 5.1 MPa, for gold and Ti cp, respectively) (p < 0.05) (Tukey's test). While ceramic-Ti cp combinations failed adhesively at the metal-opaque interface, gold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Significance: Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic-Ti cp combinations with the results being significantly lower for the latter in all experimental conditions. © 2007 Academy of Dental Materials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Among the factors that influence the success of treatment of a root perforation, its location and possibility of contamination are determinant because the interaction of these 2 factors may result in significant periodontal injury. The management of cases of hard-to-reach contaminated perforations depends on the choice of an adequate technique. In the case reported in this article, controlled orthodontic tooth extrusion was successfully performed to treat gingival recession secondary to root perforation. The outcomes showed that this technique preserves the zone of attached gingiva, maintains the crown height, and prevents the involvement of the supporting bone tissue. The favorable clinical and radio?graphic conditions after 7 years of follow-up demonstrate the viability of this treatment approach.