991 resultados para parent material


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variation of soil textural characteristics is a function of the relief and parent materials. The objective of this work was to study soil texture spatial variability from different parent material in Pereira Barreto, SP. An area of 530.67 hectares was mapped through the use of Global Positioning System receivers and obtaining of Digital Elevation Models. A set of 201 soil samples was collected from every seven hectares, at three depths: 0 - 0.25 m; 0.25 - 0.50 m; and 0.80 - 1.00 m. The amounts of sand, silt and clay were obtained by the pipette method and analyzed by both descriptive statistics and geostatistics. Soil textures varied as a function of parent materials and topography.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project sought to investigate parameters of residual soil materials located in South East Queensland (SEQ), as determined from a large number of historical site investigation records. This was undertaken to quantify material parameter variability and to assess the validity of using commonly adopted correlations to estimate "typical" soil parameters for this region. A dataset of in situ and laboratory derived residual soil parameters was constructed and analysed to identify potential correlations that related either to the entire area considered, or to specific residual soils that were derived from a common parent material. The variability of SEQ soil parameters were generally found to be greater than the results of equivalent studies that analysed transported soil dominant datasets. Noteworthy differences in material properties also became evident when residual soils weathered from different parent materials were considered independently. Large variation between the correlations developed for specific soil types was found, which highligted both heterogeneity of the studied materials and the incompatibility of generic correlations to residual soils present in SEQ. Region and parent material specific correlations that estimate shear strength from in situ penetration tests have been proposed for the various residual soil types considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large concentrations of magnetite in sedimentary deposits and soils with igneous parent material have been reported to affect geophysical sensor performance. We have undertaken the first systematic experimental effort to understand the effects of magnetite for ground-penetrating radar (GPR) characterization of the shallow subsurface. Laboratory experiments were conducted to study how homogeneous magnetite-sand mixtures and magnetite concentrated in layers affect the propagation behavior (velocity, attenuation) of high-frequency GPR waves and the reflection characteristics of a buried target. Important observations were that magnetite had a strong effect on signal velocity and reflection, at magnitudes comparable to what has been observed in small-scale laboratory experiments that measured electromagnetic properties of magnetite-silica mixtures. Magnetite also altered signal attenuation and affected the reflection characteristics of buried targets. Our results indicated important implications for several fields, including land mine detection, Martian exploration, engineering, and moisture mapping using satellite remote sensing and radiometers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soils at many locations that have their origin in volcanic parent material and have undergone extensive weathering often exhibit strong frequency-dependent magnetic susceptibilities. The presence of such susceptibility has a profound effect on electromagnetic induction data acquired in such environments. Their transient electromagnetic response is characterized by a t-1 decay that is strong enough to mask UXO responses. In a field study and associated laboratory work on characterizing the frequency-dependent magnetic susceptibility and its influence on transient electromagnetic data, we collected soil samples on the surface and in soil pits from the Island of Kaho'olawe, Hawaii, and measured their frequency dependent magnetic susceptibilities. We present the details of the field investigation, confirm previous theoretical work with field and laboratory measurements, characterize the susceptibility with a Cole-Cole model, and investigate the response specific to the measured susceptibility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have carried out fluorination on La2NiO4 and La2CuO4+?. Only a small fraction of fluorine enters the bulk; the rest resides on the surface. The cuprate after fluorination exhibits greater departures from tetragonal symmetry than the parent material and transforms at not, vert, similar40 K to the superconducting state. By contrast, the nickelate deviates less from tetragonal symmetry upon fluorination; no superconductivity was observed down to 4.2 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fragility is viewed as a measure of the loss of rigidity of a glass structure above its glass transition temperature. It is attributed to the weakness of directional bonding and to the presence of a high density of low-energy configurational states. An a priori fragility function of electronegativities and bond distances is proposed which quite remarkably reproduces the entire range of reported fragilities and demonstrates that the fragility of a melt is indeed encrypted in the chemistry of the parent material. It has also been shown that the use of fragility-modified activation barriers in the Arrhenius function account for the whole gamut of viscosity behavior of liquids. It is shown that fragility can be a universal scaling parameter to collapse all viscosity curves on to a master plot.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated Li+/H+ exchange in the lithium ion conductors (LISICONS) [ Li2+2xZn1-xGeO4; x = 0.5 ( I) and x = 0.75 (II)] and their parent, gamma-Li2ZnGeO4. Facile exchange of approximately 2x lithium ions per formula unit occurs with both the LISICONS in dilute acetic acid, while the parent material does not exhibit an obvious Li+/H+ exchange under the same conditions. The results can be understood in terms of lithium ion distribution in the crystal structures: the parent Li2ZnGeO4, where all the lithium ions form part of the tetrahedral framework structure, does not exhibit a ready Li+/H+ exchange; LISICONS, where lithium ions are distributed between framework ( tetrahedral) and nonframework sites, undergo a facile Li+/H+ exchange of the nonframework site lithium ions. Accordingly, Li+/H+ exchange in dilute aqueous acetic acid provides a convenient probe to distinguish between the mobile and the immobile lithium ions in lithium ion conductors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper highlights the role of globular microstructure on the weldability of semi-solid processed aluminum alloys via high temperature flow behavior. The investigation was carried out on the joining of thixocast A356 aluminum alloy components by friction welding. A thermomechanical model was developed to predict the temperature and stress distributions, as well as to identify the suitable and safe range of parameters. Good comparisons between numerical and experimental results were observed. In addition, metallographic examinations and hardness and tensile tests of the welded samples were carried out. It was found that the tensile strength of the joint is higher than the tensile strength of the parent material for the optimum set of parameters. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stability of a fracture toughness testing geometry is important to determine the crack trajectory and R-curve behavior of the specimen. Few configurations provide for inherent geometric stability, especially when the specimen being tested is brittle. We propose a new geometrical construction called the single edge notched clamped bend specimen (SENCB), a modified form of three point bending, yielding stable cracking under load control. It is shown to be particularly suitable for small-scale structures which cannot be made free-standing, (e.g., thin films, coatings). The SENCB is elastically clamped at the two ends to its parent material. A notch is inserted at the bottom center and loaded in bending, to fracture. Numerical simulations are carried out through extended finite element method to derive the geometrical factor f(a/W) and for different beam dimensions. Experimental corroborations of the FEM results are carried out on both micro-scale and macro-scale brittle specimens. A plot of vs a/W, is shown to rise initially and fall off, beyond a critical a/W ratio. The difference between conventional SENB and SENCB is highlighted in terms of and FEM simulated stress contours across the beam cross-section. The `s of bulk NiAl and Si determined experimentally are shown to match closely with literature values. Crack stability and R-curve effect is demonstrated in a PtNiAl bond coat sample and compared with predicted crack trajectories from the simulations. The stability of SENCB is shown for a critical range of a/W ratios, proving that it can be used to get controlled crack growth even in brittle samples under load control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strontium modified barium zirconium titanate with general formula Ba1-xSrxZr0.05Ti0.95O3 ceramics have been prepared by solid state and high energy ball milling technique. The X-ray diffraction and Rietveld refinement studies show that all the compositions have single phase symmetry. The composition BaZr0.05Ti0.95O3 shows orthorhombic symmetric with space group Amm2. The structure changes from orthorhombic to tetragonal with strontium doping up to x = 0.3 and with further addition, changes to cubic. The scanning electron micrographs show that the grain size decreases with increase in strontium content. The temperature dependent dielectric behavior shows three phase transition in the parent material which merges with an increase in Sr content The transition temperature and dielectric constant decreases with an increase in Sr concentration. The phase transition becomes more diffused with increment in doping concentration. The ferroelectric behavior of the ceramics is studied by the hysteresis loop. The optical behavior is studied by the UV-visible spectroscopy and found that the optical band gap increases with Sr concentration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phosphorus removal by wetlands and basins in Lake Tahoe may be improved through designing these systems to filter storm water through media having higher phosphorus removal capabilities than local parent material. Substrates rich in iron, aluminum and calcium oftentimes have enhanced phosphorus removal. These substrates can be naturally occurring, byproducts of industrial or water treatment processes, or engineered. Phosphorus removal fundamentally occurs through chemical adsorption and/or precipitation and much of the phosphorus can be irreversibly bound. In addition to these standard media, other engineered substrates are available to enhance P removal. One such substrate is locally available in Reno and uses lanthanum coated diatomaceous earth for arsenate removal. This material, which has a high positive surface charge, can also irreversibly remove phosphorus. Physical factors also affect P removal. Specifically, specific surface area and particle shape affect filtration capacity, contact area between water and the surface area, and likelihood of clogging and blinding. A number of substrates have been shown to effectively remove P in case studies. Based upon these studies, promising substrates include WTRs, blast furnace slag, steel furnace slag, OPC, calcite, marble Utelite and other LWAs, zeolite and shale. However, other nonperformance factors such as environmental considerations, application logistics, costs, and potential for cementification narrow the list of possible media for application at Tahoe. Industrial byproducts such as slags risk possible leaching of heavy metals and this potential cannot be easily predicted. Fly ash and other fine particle substrates would be more difficult to apply because they would need to be blended, making them less desirable and more costly to apply than larger diameter media. High transportation costs rule out non-local products. Finally, amorphous calcium products will eventually cementify reducing their effectiveness in filtration systems. Based upon these considerations, bauxite, LWAs and expanded shales/clays, iron-rich sands, activated alumina, marble and dolomite, and natural and lanthanum activated diatomaceous earth are the products most likely to be tested for application at Tahoe. These materials are typically iron, calcium or aluminum based; many have a high specific surface area; and all have low transportation costs. (PDF contains 21 pages)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PD6493:1991 fracture assessment have been performed for a range of large-scale fracture mechanics tests conducted at TWI in the past. These tests cover several material groups, including pressure vessel steels, pipeline steels, stainless steels and aluminium alloys, including parent material and weldments. Ninety-two wide plate and pressure vessel tests have been assessed, following Levels 1, 2 and 3 PD6493:1991 procedures. In total, over 400 assessments have been performed, examining many features of the fracture assessment procedure including toughness input, proof testing, residual stress assumptions and stress state (tension, bending and biaxial). In all cases the large scale tests have been assessed as one would actual structures: i.e., based on lower bound toughness values obtained from small scale fracture toughness specimens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon fibre-epoxy composite square honeycombs, and the parent composite material, were tested in quasi-static compression at a strain rate of 10 -3 s -1 and in dynamic compression at strain rates of 10 3-10 4 s -1 using an instrumented Kolsky bar arrangement. Taken together, these tests provide an assessment of the potential of this composite topology for use as a lightweight sandwich core. The honeycombs had two relative densities, 0.12 and 0.24, and two material orientations, ±45° and 0/90° with respect to the prismatic, loading direction of the honeycomb. Honeycomb manufacture was by slotting, assembling and bonding together carbon fibre/epoxy woven plies of composite sheets of 2 × 2 twill weave construction. The peak value of wall stress in the honeycombs was about one third that of the parent material, for all strain rates. An elastic finite element analysis was used to trace the source of this knock-down in strength: a stress concentration exists at the root of the slots and leads to premature failure by microbuckling. Shock-wave effects were evident at impact velocities exceeding 50 ms -1 for the honeycomb of relative density 0.12. This was traced to stubbing of the buckled cell walls against the face of the Kolsky bar. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix. Crown Copyright (c) 2010 Published by Elsevier Ltd. All rights reserved.