951 resultados para parasite remains
Resumo:
Organic remains can be found in many different environments. They are the most significant source for paleoparasitological studies as well as for other paleoecological reconstruction. Preserved paleoparasitological remains are found from the driest to the moistest conditions. They help us to understand past and present diseases and therefore contribute to understanding the evolution of present human sociality, biology, and behavior. In this paper, the scope of the surviving evidence will be briefly surveyed, and the great variety of ways it has been preserved in different environments will be discussed. This is done to develop to the most appropriated techniques to recover remaining parasites. Different techniques applied to the study of paleoparasitological remains, preserved in different environments, are presented. The most common materials used to analyze prehistoric human groups are reviewed, and their potential for reconstructing ancient environment and disease are emphasized. This paper also urges increased cooperation among archaeologists, paleontologists, and paleoparasitologists.
Resumo:
Species of the genus Leishmania (Kinetoplastida, Trypanosomatidae) are causative agents of leishmaniasis, a complex disease with variable clinical spectrum and epidemiological diversity, constituting, in some countries, a serious public health problem. The origin and evolution of leishmaniasis has been under discussion regarding some clinical and parasitological aspects. After the introduction of paleoparasitology, molecular methods and immunodiagnostic techniques have been applied allowing the recovery of parasite remains, as well as the diagnosis of past infections in humans and other hosts. The dating of archaeological samples has allowed the parasitological analysis in time and space. This manuscript presents the state of the art of leishmaniasis and prospects related to paleoparasitology studies and their contribution to the evolutionary and phylogenetic clarification of parasites belonging to the genus Leishmania, and the leishmaniasis caused by them.
Resumo:
Three techniques to extract parasite remains from archaeological sediments were tested. The aim was to improve the sensibility of recommended paleoparasitological techniques applied in archaeological remains. Sediment collected from the pelvic girdle of a human body found in Cabo Vírgenes, Santa Cruz, Argentina, associated to a Spanish settlement founded in 1584 known as Nombre de Jesús, was used to search for parasites. Sediment close to the skull was used as control. The techniques recommended by Jones, Reinhard, and Dittmar and Teejen were used and compared with the modified technique presented here, developed to improve the sensibility to detect parasite remains. Positive results were obtained only with the modified technique, resulting in the finding of Trichuris trichiura eggs in the sediment.
Resumo:
The aim of this study was to examine the parasite remains present in rodent coprolites collected from the archaeological site Alero Destacamento Guardaparque (ADG) located in the Perito Moreno National Park (Santa Cruz Province, 47º57'S 72º05'W). Forty-eight coprolites were obtained from the layers 7, 6 and 5 of ADG, dated at 6,700 ± 70, 4,900 ± 70 and 3,440 ± 70 years BP, respectively. The faecal samples were processed and examined using paleoparasitological procedures. A total of 582 eggs of parasites were found in 47 coprolites. Samples were positive for eggs of Trichuris sp. (Nematoda: Trichuridae), Calodium sp., Eucoleus sp., Echinocoleus sp. and an unidentified capillariid (Nematoda: Capillariidae) and for eggs of Monoecocestus (Cestoda: Anoplocephalidae). Quantitative differences among layer for both coprolites and parasites were recorded. In this study, the specific filiations of parasites, their zoonotic importance, the rodent identity, on the basis of previous zooarchaeological knowledge, and the environmental conditions during the Holocene in the area are discussed.
Resumo:
Tetracapsuloides bryosalmonae is the myxozoan parasite causing proliferative kidney disease (PKD) of salmonid fishes in Europe and North America. The complete life cycle of the parasite remains unknown despite recent discoveries that the stages infectious for fish develop in freshwater bryozoans. During the course of examinations of the urine of rainbow trout (Oncorhynchus mykiss) with or recovering from PKD we identified spores with features similar to those of T. bryosalmonae found in the bryozoan host. Spores found in the urine were subspherical, with a width of 16 mum and height of 14 mum, and possessed two soft valves surrounding two spherical polar capsules (2 mum in diameter) and a single sporoplasm. The absence of hardened valves is a distinguishing characteristic of the newly established class Malacosporea that includes T. bryosalmonae as found in the bryozoan host. The parasite in the urine of rainbow trout possessed only two polar capsules and two valve cells compared to the four polar capsules and four valves observed in the spherical spores of 19 mum in diameter from T. bryosalmonae from the bryozoan host. Despite morphological differences, a relationship between the spores in the urine of rainbow trout and T. bryosalmonae was demonstrated by binding of monoclonal and polyclonal antibodies and DNA probes specific to T. bryosalmonae.
Resumo:
The liver stage of the Plasmodium parasite remains one of the most promising targets for intervention against malaria as it is clinically silent, precedes the symptomatic blood stage and represents a bottleneck in the parasite life cycle. However, many aspects of the development of the parasite during this stage are far from understood. During the liver stage, the parasite undergoes extensive replication, forming tens of thousands of infectious merozoites from each invading sporozoite. This implies a very efficient and accurate process of cytokinesis and thus also of organelle development and segregation. We have generated for the first time Plasmodium berghei double-fluorescent parasite lines, allowing visualization of the apicoplast, mitochondria and nuclei in live liver stage parasites. Using these we have seen that in parallel with nuclear division, the apicoplast and mitochondrion become two extensively branched and intertwining structures. The organelles then undergo impressive morphological and positional changes prior to cell division. To form merozoites, the parasite undergoes cytokinesis and the complex process of organelle development and segregation into the forming daughter merozoites could be analysed in detail using the newly generated transgenic parasites.
Resumo:
Dissertação de Mestrado, Aquacultura e Pescas, Especialização em Aquacultura, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Introduction The Pampulha reservoir has long been a focus of schistosomiasis transmission in Belo Horizonte, State of Minas Gerais, Brazil. The last malacological study conducted in this urban reservoir was more than two decades ago, and thus, an update on the distribution of the species of Biomphalaria as well as new data on the presence of Schistosoma mansoni in this water body are required. Methods The current distribution of Biomphalaria spp. in the Pampulha reservoir and their infection with S. mansoni was evaluated during 55 malacological surveys conducted between 2009 and 2012. Results Biomphalaria straminea displayed a high population density and distribution, and 13.7% (2,233/16,235) of the specimens collected were infected with larval trematodes other than Schistosoma mansoni. Biomphalaria tenagophila and Biomphalaria glabrata, species currently presenting a restricted distribution and small populations, displayed trematode infection rates of 15.2% (98/644) and 13% (83/640), respectively. Thirteen (2%) specimens of B. glabrata were found to be infected with S. mansoni. In addition, a historical review based on previous and new data on the occurrence patterns of Biomphalaria species in this reservoir is presented. Conclusions The results indicate that the Pampulha reservoir remains a potential focus of urban schistosomiasis in Brazil, and significant changes in the occurrence patterns of Biomphalaria species were verified.
Resumo:
Nematodes and fragments of lungs from Cebus ssp., Callithrix jacchus (l.) and Saimiri sciureus (L.) were studied. The worms from Cebus and Callithrix must be called Filariopsis barretoi (Travassos, 1921). The names Filariopsis arator Chandler, 1931 and Filaroides cebi Gebauer, 1933 are synonymized to F. barretoi. The status of Filariopsis gordius (Travassos, 1921) remains uncertain. The pathology is described. The parasites are located in the pulmonary paranchyma, near the pleural surface, constituting nodules.
Resumo:
Excavations at two sites dating from 2000 BC-1900 AD in southeastern areas of the Republic of Korea, revealed the remains of several structures. Examination of the contents suspected privies revealed the presence of eggs from 5 kinds of parasite: Ascaris, Trichuris, Clonorchis, and two species of unknown trematodes. Clonorchis sinensis eggs were found in a soil dating from around AD 668-935. This is the first record of C. sinensis eggs in archaeological materials in the Republic of Korea.
Resumo:
Human occupation for several centuries was recorded in the archaeological layers of "Place d'Armes", Namur, Belgium. Preventive archaeological excavations were carried out between 1996/1997 and seven historical strata were observed, from Gallo-Roman period up to Modern Times. Soil samples from cesspools, latrines, and structures-like were studied and revealed intestinal parasite eggs in the different archaeological contexts. Ascaris lumbricoides, A. suum, Trichuris trichiura, T. suis. Taenia sp., Fasciola hepatica, Diphyllobothrium sp., Capillaria sp. and Oxyuris equi eggs were found. Paleoparasitology confirmed the use of structures as latrines or cesspit as firstly supposed by the archaeologists. Medieval latrines were not only used for rejection of human excrements. The finding of Ascaris sp. and Trichuris sp. eggs may point to human's or wild swine's feces. Gallo-Roman people used to eat wild boar. Therefore, both A. suum and T. suis, or A. lumbricoides and T. trichuris, may be present, considering a swine carcass recovered into a cesspit. Careful sediment analysis may reveal its origin, although parasites of domestic animals can be found together with those of human's. Taenia sp. eggs identified in latrine samples indicate ingestion of uncooked beef with cysticercoid larvae. F. hepatica eggs suggest the ingestion of raw contaminated vegetables and Diphyllobothrium sp. eggs indicate contaminated fresh-water fish consumption. Ascaris sp. and Trichuris sp. eggs indicate fecal-oral infection by human and/or animal excrements.
Resumo:
We evaluated the presence and distribution of Trypanosoma cruzi DNA in a mummy presenting with megacolon that was dated as approximately 560 ± 40 years old. The mummy was from the Peruaçu Valley in the state of Minas Gerais, Brazil. All samples were positive for T. cruzi minicircle DNA, demonstrating the presence and broad dissemination of the parasite in this body. From one sample, a mini-exon gene fragment was recovered and characterized by sequencing and was found to belong to the T. cruzi I genotype. This finding suggests that T. cruzi I infected humans during the pre-Columbian times and that, in addition to T. cruzi infection, Chagas disease in Brazil most likely preceded European colonization.
Resumo:
In the acute phase and in the chronic forms of Chagas disease, the etiological diagnosis may be performed by detection of the parasite using direct or indirect parasitological methods and by the presence of antibodies in the serum by way of serological tests. Several techniques are easily available, ranging from the simplest wet smear preparation to immuno-enzymatic assays with recombinant antigens that will meet most diagnostic needs. Other tests under evaluation include a molecular test using polymerase chain reaction, which has shown promising results and may be used as a confirmatory test both in the acute and chronic phases of the disease. Better rapid tests are needed for diagnosis, some of which are already under evaluation. Additionally, there is a need for tools that can identify patients cured shortly after specific treatment. Other needs include a marker for prognosis and early diagnosis of congenital transmission.
Resumo:
Paleoparasitological research has made important contributions to the understanding of parasite evolution and ecology. Although parasitic protozoa exhibit a worldwide distribution, recovering these organisms from an archaeological context is still exceptional and relies on the availability and distribution of evidence, the ecology of infectious diseases and adequate detection techniques. Here, we present a review of the findings related to protozoa in ancient remains, with an emphasis on their geographical distribution in the past and the methodologies used for their retrieval. The development of more sensitive detection methods has increased the number of identified parasitic species, promising interesting insights from research in the future.
Resumo:
We present a paleoparasitological analysis of the medieval Zeleniy Yar burial ground of the XII-XII centuries AD located in the northern part of Western Siberia. Parasite eggs, identified as eggs of Opisthorchis felineus, were found in the samples from the pelvic area of a one year old infant buried at the site. Presence of these eggs in the soil samples from the infant’s abdomen suggests that he/she was infected with opisthorchiasis and imply consumption of undercooked fish. Ethnographic records collected among the population of the northern part of Western Siberia reveal numerous cases of feeding raw fish to their children. Zeleniy Yar case of opisthorchiasis suggests that this dietary custom has persisted from at least medieval times.