459 resultados para parallelism
Resumo:
Technical Report to accompany Ownership for Reasoning About Parallelism. Documents type system which captures effects and the operational semantics for the language which is presented as part of the paper.
Resumo:
With the emergence of multi-cores into the mainstream, there is a growing need for systems to allow programmers and automated systems to reason about data dependencies and inherent parallelismin imperative object-oriented languages. In this paper we exploit the structure of object-oriented programs to abstract computational side-effects. We capture and validate these effects using a static type system. We use these as the basis of sufficient conditions for several different data and task parallelism patterns. We compliment our static type system with a lightweight runtime system to allow for parallelization in the presence of complex data flows. We have a functioning compiler and worked examples to demonstrate the practicality of our solution.
Resumo:
With the emergence of multi-core processors into the mainstream, parallel programming is no longer the specialized domain it once was. There is a growing need for systems to allow programmers to more easily reason about data dependencies and inherent parallelism in general purpose programs. Many of these programs are written in popular imperative programming languages like Java and C]. In this thesis I present a system for reasoning about side-effects of evaluation in an abstract and composable manner that is suitable for use by both programmers and automated tools such as compilers. The goal of developing such a system is to both facilitate the automatic exploitation of the inherent parallelism present in imperative programs and to allow programmers to reason about dependencies which may be limiting the parallelism available for exploitation in their applications. Previous work on languages and type systems for parallel computing has tended to focus on providing the programmer with tools to facilitate the manual parallelization of programs; programmers must decide when and where it is safe to employ parallelism without the assistance of the compiler or other automated tools. None of the existing systems combine abstraction and composition with parallelization and correctness checking to produce a framework which helps both programmers and automated tools to reason about inherent parallelism. In this work I present a system for abstractly reasoning about side-effects and data dependencies in modern, imperative, object-oriented languages using a type and effect system based on ideas from Ownership Types. I have developed sufficient conditions for the safe, automated detection and exploitation of a number task, data and loop parallelism patterns in terms of ownership relationships. To validate my work, I have applied my ideas to the C] version 3.0 language to produce a language extension called Zal. I have implemented a compiler for the Zal language as an extension of the GPC] research compiler as a proof of concept of my system. I have used it to parallelize a number of real-world applications to demonstrate the feasibility of my proposed approach. In addition to this empirical validation, I present an argument for the correctness of the type system and language semantics I have proposed as well as sketches of proofs for the correctness of the sufficient conditions for parallelization proposed.
Resumo:
The cytokinins (benzyladenine or benzyladenosine) decreased spermidine and spermine contents despite increasing putrescine content, when administered to isolated cotyledons of Cucumis sativus L. var. Guntur in organ culture. KCl decreased putrescine contents, although marginally increasing polyamine contents. The cytokinins and/or KCl augmented nucleic acid biosynthesis and accumulation, resulting in enhanced growth and differentiation of the isolated cotyledons. These observations show that polyamine accumulation and growth are not always coupled.
Resumo:
In this paper, we introduce an analytical technique based on queueing networks and Petri nets for making a performance analysis of dataflow computations when executed on the Manchester machine. This technique is also applicable for the analysis of parallel computations on multiprocessors. We characterize the parallelism in dataflow computations through a four-parameter characterization, namely, the minimum parallelism, the maximum parallelism, the average parallelism and the variance in parallelism. We observe through detailed investigation of our analytical models that the average parallelism is a good characterization of the dataflow computations only as long as the variance in parallelism is small. However, significant difference in performance measures will result when the variance in parallelism is comparable to or higher than the average parallelism.
Resumo:
Abstract—A new breed of processors like the Cell Broadband Engine, the Imagine stream processor and the various GPU processors emphasize data-level parallelism (DLP) and threadlevel parallelism (TLP) as opposed to traditional instructionlevel parallelism (ILP). This allows them to achieve order-ofmagnitude improvements over conventional superscalar processors for many workloads. However, it is unclear as to how much parallelism of these types exists in current programs. Most earlier studies have largely concentrated on the amount of ILP in a program, without differentiating DLP or TLP. In this study, we investigate the extent of data-level parallelism available in programs in the MediaBench suite. By packing instructions in a SIMD fashion, we observe reductions of up to 91 % (84 % on average) in the number of dynamic instructions, indicating a very high degree of DLP in several applications. I.
Resumo:
Most stencil computations allow tile-wise concurrent start, i.e., there always exists a face of the iteration space and a set of tiling hyperplanes such that all tiles along that face can be started concurrently. This provides load balance and maximizes parallelism. However, existing automatic tiling frameworks often choose hyperplanes that lead to pipelined start-up and load imbalance. We address this issue with a new tiling technique that ensures concurrent start-up as well as perfect load-balance whenever possible. We first provide necessary and sufficient conditions on tiling hyperplanes to enable concurrent start for programs with affine data accesses. We then provide an approach to find such hyperplanes. Experimental evaluation on a 12-core Intel Westmere shows that our code is able to outperform a tuned domain-specific stencil code generator by 4% to 27%, and previous compiler techniques by a factor of 2x to 10.14x.
Resumo:
Affine transformations have proven to be very powerful for loop restructuring due to their ability to model a very wide range of transformations. A single multi-dimensional affine function can represent a long and complex sequence of simpler transformations. Existing affine transformation frameworks like the Pluto algorithm, that include a cost function for modern multicore architectures where coarse-grained parallelism and locality are crucial, consider only a sub-space of transformations to avoid a combinatorial explosion in finding the transformations. The ensuing practical tradeoffs lead to the exclusion of certain useful transformations, in particular, transformation compositions involving loop reversals and loop skewing by negative factors. In this paper, we propose an approach to address this limitation by modeling a much larger space of affine transformations in conjunction with the Pluto algorithm's cost function. We perform an experimental evaluation of both, the effect on compilation time, and performance of generated codes. The evaluation shows that our new framework, Pluto+, provides no degradation in performance in any of the Polybench benchmarks. For Lattice Boltzmann Method (LBM) codes with periodic boundary conditions, it provides a mean speedup of 1.33x over Pluto. We also show that Pluto+ does not increase compile times significantly. Experimental results on Polybench show that Pluto+ increases overall polyhedral source-to-source optimization time only by 15%. In cases where it improves execution time significantly, it increased polyhedral optimization time only by 2.04x.
Resumo:
We describe an approach to parallel compilation that seeks to harness the vast amount of fine-grain parallelism that is exposed through partial evaluation of numerically-intensive scientific programs. We have constructed a compiler for the Supercomputer Toolkit parallel processor that uses partial evaluation to break down data abstractions and program structure, producing huge basic blocks that contain large amounts of fine-grain parallelism. We show that this fine-grain prarllelism can be effectively utilized even on coarse-grain parallel architectures by selectively grouping operations together so as to adjust the parallelism grain-size to match the inter-processor communication capabilities of the target architecture.
Resumo:
This paper addresses the problem of efficiently computing the motor torques required to drive a lower-pair kinematic chain (e.g., a typical manipulator arm in free motion, or a mechanical leg in the swing phase) given the desired trajectory; i.e., the Inverse Dynamics problem. It investigates the high degree of parallelism inherent in the computations, and presents two "mathematically exact" formulations especially suited to high-speed, highly parallel implementations using special-purpose hardware or VLSI devices. In principle, the formulations should permit the calculations to run at a speed bounded only by I/O. The first presented is a parallel version of the recent linear Newton-Euler recursive algorithm. The time cost is also linear in the number of joints, but the real-time coefficients are reduced by almost two orders of magnitude. The second formulation reports a new parallel algorithm which shows that it is possible to improve upon the linear time dependency. The real time required to perform the calculations increases only as the [log2] of the number of joints. Either formulation is susceptible to a systolic pipelined architecture in which complete sets of joint torques emerge at successive intervals of four floating-point operations. Hardware requirements necessary to support the algorithm are considered and found not to be excessive, and a VLSI implementation architecture is suggested. We indicate possible applications to incorporating dynamical considerations into trajectory planning, e.g. it may be possible to build an on-line trajectory optimizer.
Resumo:
Communication and synchronization stand as the dual bottlenecks in the performance of parallel systems, and especially those that attempt to alleviate the programming burden by incurring overhead in these two domains. We formulate the notions of communicable memory and lazy barriers to help achieve efficient communication and synchronization. These concepts are developed in the context of BSPk, a toolkit library for programming networks of workstations|and other distributed memory architectures in general|based on the Bulk Synchronous Parallel (BSP) model. BSPk emphasizes efficiency in communication by minimizing local memory-to-memory copying, and in barrier synchronization by not forcing a process to wait unless it needs remote data. Both the message passing (MP) and distributed shared memory (DSM) programming styles are supported in BSPk. MP helps processes efficiently exchange short-lived unnamed data values, when the identity of either the sender or receiver is known to the other party. By contrast, DSM supports communication between processes that may be mutually anonymous, so long as they can agree on variable names in which to store shared temporary or long-lived data.
Resumo:
Traditional static analysis fails to auto-parallelize programs with a complex control and data flow. Furthermore, thread-level parallelism in such programs is often restricted to pipeline parallelism, which can be hard to discover by a programmer. In this paper we propose a tool that, based on profiling information, helps the programmer to discover parallelism. The programmer hand-picks the code transformations from among the proposed candidates which are then applied by automatic code transformation techniques.
This paper contributes to the literature by presenting a profiling tool for discovering thread-level parallelism. We track dependencies at the whole-data structure level rather than at the element level or byte level in order to limit the profiling overhead. We perform a thorough analysis of the needs and costs of this technique. Furthermore, we present and validate the belief that programs with complex control and data flow contain significant amounts of exploitable coarse-grain pipeline parallelism in the program’s outer loops. This observation validates our approach to whole-data structure dependencies. As state-of-the-art compilers focus on loops iterating over data structure members, this observation also explains why our approach finds coarse-grain pipeline parallelism in cases that have remained out of reach for state-of-the-art compilers. In cases where traditional compilation techniques do find parallelism, our approach allows to discover higher degrees of parallelism, allowing a 40% speedup over traditional compilation techniques. Moreover, we demonstrate real speedups on multiple hardware platforms.