995 resultados para parallel simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An effective approach of simulating fluid dynamics on a cluster of non- dedicated workstations is presented. The approach uses local interaction algorithms, small communication capacity, and automatic migration of parallel processes from busy hosts to free hosts. The approach is well- suited for simulating subsonic flow problems which involve both hydrodynamics and acoustic waves; for example, the flow of air inside wind musical instruments. Typical simulations achieve $80\\%$ parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. Detailed measurements of the parallel efficiency of 2D and 3D simulations are presented, and a theoretical model of efficiency is developed which fits closely the measurements. Two numerical methods of fluid dynamics are tested: explicit finite differences, and the lattice Boltzmann method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P-GENESIS is an extension to the GENESIS neural simulator that allows users to take advantage of parallel machines to speed up the simulation of their network models or concurrently simulate multiple models. P-GENESIS adds several commands to the GENESIS script language that let a script running on one processor execute remote procedure calls on other processors, and that let a script synchronize its execution with the scripts running on other processors. We present here some brief comments on the mechanisms underlying parallel script execution. We also offer advice on parallelizing parameter searches, partitioning network models, and selecting suitable parallel hardware on which to run P-GENESIS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes distributed/parallel simulation system Triad.Net and software, which allows geographical distributed users to participate collaboratively and remotely in simulation experiments and to observe simulation model behavior via Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor. © 2011 SPIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the insight gained from 2-D particle models, and given that the dynamics of crustal faults occur in 3-D space, the question remains, how do the 3-D fault gouge dynamics differ from those in 2-D? Traditionally, 2-D modeling has been preferred over 3-D simulations because of the computational cost of solving 3-D problems. However, modern high performance computing architectures, combined with a parallel implementation of the Lattice Solid Model (LSM), provide the opportunity to explore 3-D fault micro-mechanics and to advance understanding of effective constitutive relations of fault gouge layers. In this paper, macroscopic friction values from 2-D and 3-D LSM simulations, performed on an SGI Altix 3700 super-cluster, are compared. Two rectangular elastic blocks of bonded particles, with a rough fault plane and separated by a region of randomly sized non-bonded gouge particles, are sheared in opposite directions by normally-loaded driving plates. The results demonstrate that the gouge particles in the 3-D models undergo significant out-of-plane motion during shear. The 3-D models also exhibit a higher mean macroscopic friction than the 2-D models for varying values of interparticle friction. 2-D LSM gouge models have previously been shown to exhibit accelerating energy release in simulated earthquake cycles, supporting the Critical Point hypothesis. The 3-D models are shown to also display accelerating energy release, and good fits of power law time-to-failure functions to the cumulative energy release are obtained.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Avec la complexité croissante des systèmes sur puce, de nouveaux défis ne cessent d’émerger dans la conception de ces systèmes en matière de vérification formelle et de synthèse de haut niveau. Plusieurs travaux autour de SystemC, considéré comme la norme pour la conception au niveau système, sont en cours afin de relever ces nouveaux défis. Cependant, à cause du modèle de concurrence complexe de SystemC, relever ces défis reste toujours une tâche difficile. Ainsi, nous pensons qu’il est primordial de partir sur de meilleures bases en utilisant un modèle de concurrence plus efficace. Par conséquent, dans cette thèse, nous étudions une méthodologie de conception qui offre une meilleure abstraction pour modéliser des composants parallèles en se basant sur le concept de transaction. Nous montrons comment, grâce au raisonnement simple que procure le concept de transaction, il devient plus facile d’appliquer la vérification formelle, le raffinement incrémental et la synthèse de haut niveau. Dans le but d’évaluer l’efficacité de cette méthodologie, nous avons fixé l’objectif d’optimiser la vitesse de simulation d’un modèle transactionnel en profitant d’une machine multicoeur. Nous présentons ainsi l’environnement de modélisation et de simulation parallèle que nous avons développé. Nous étudions différentes stratégies d’ordonnancement en matière de parallélisme et de surcoût de synchronisation. Une expérimentation faite sur un modèle du transmetteur Wi-Fi 802.11a a permis d’atteindre une accélération d’environ 1.8 en utilisant deux threads. Avec 8 threads, bien que la charge de travail des différentes transactions n’était pas importante, nous avons pu atteindre une accélération d’environ 4.6, ce qui est un résultat très prometteur.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Streaming SIMD extension (SSE) is a special feature embedded in the Intel Pentium III and IV classes of microprocessors. It enables the execution of SIMD type operations to exploit data parallelism. This article presents improving computation performance of a railway network simulator by means of SSE. Voltage and current at various points of the supply system to an electrified railway line are crucial for design, daily operation and planning. With computer simulation, their time-variations can be attained by solving a matrix equation, whose size mainly depends upon the number of trains present in the system. A large coefficient matrix, as a result of congested railway line, inevitably leads to heavier computational demand and hence jeopardizes the simulation speed. With the special architectural features of the latest processors on PC platforms, significant speed-up in computations can be achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Streaming SIMD extension (SSE) is a special feature that is available in the Intel Pentium III and P4 classes of microprocessors. As its name implies, SSE enables the execution of SIMD (Single Instruction Multiple Data) operations upon 32-bit floating-point data therefore, performance of floating-point algorithms can be improved. In electrified railway system simulation, the computation involves the solving of a huge set of simultaneous linear equations, which represent the electrical characteristic of the railway network at a particular time-step and a fast solution for the equations is desirable in order to simulate the system in real-time. In this paper, we present how SSE is being applied to the railway network simulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Computer simulation is a versatile and commonly used tool for the design and evaluation of systems with different degrees of complexity. Power distribution systems and electric railway network are areas for which computer simulations are being heavily applied. A dominant factor in evaluating the performance of a software simulator is its processing time, especially in the cases of real-time simulation. Parallel processing provides a viable mean to reduce the computing time and is therefore suitable for building real-time simulators. In this paper, we present different issues related to solving the power distribution system with parallel computing based on a multiple-CPU server and we will concentrate, in particular, on the speedup performance of such an approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increased focus on energy cost savings and carbon footprint reduction efforts improved the visibility of building energy simulation, which became a mandatory requirement of several building rating systems. Despite developments in building energy simulation algorithms and user interfaces, there are some major challenges associated with building energy simulation; an important one is the computational demands and processing time. In this paper, we analyze the opportunities and challenges associated with this topic while executing a set of 275 parametric energy models simultaneously in EnergyPlus using a High Performance Computing (HPC) cluster. Successful parallel computing implementation of building energy simulations will not only improve the time necessary to get the results and enable scenario development for different design considerations, but also might enable Dynamic-Building Information Modeling (BIM) integration and near real-time decision-making. This paper concludes with the discussions on future directions and opportunities associated with building energy modeling simulations.