999 resultados para pantothenic acid
Resumo:
The conformational analysis of d-pantothenic acid using classical semiempirical methods has been carried out. The pantothenic acid molecule can exist in the neutral form (I) or in the ionised form (II) with a deprotonated negatively charged carboxyl group. The neutral molecule as well as the anion is highly flexible and has an ensemble of several allowed conformations rather than one or two unique conformations. The distribution of allowed conformations indicate that the β-alanine as well as the pantoic acid part of the molecule prefers partially folded conformations. The conformation of the former is greatly affected by the ionisation state of the carboxyl group whereas that of the latter is not. Possibility of intramolecular hydrogen bonding in different allowed conformations has also been explored. A bifurcated hydrogen bond involving a carboxyl (or carboxylate) oxygen atom and a hydroxyl oxygen atom, as acceptors, and the amide nitrogen atom as the donor occurs frequently in both I and II. Amongst the two crystal structures containing pantothenic acid reported so far, the conformation of the molecule in l-lysine d-pantothenate lies in the allowed region and is stabilised by a bifurcated intramolecular hydrogen bond, whereas that in the calcium bromide salt falls in a disallowed region, presumably due to the requirement of tridentate metal coordination.
Resumo:
The distribution of pantothenic acid in free and bound forms in various fish species is reported. It is observed that the fish muscle contains on an average about 12.0µ g pantothenic acid per g. About 60% of the pantothenic acid is present in the bound form as coenzyme A in the fish skeletal muscle.
Resumo:
Pantothenicacid (PA), vitamin B5, is an essential B vitamin that may be fortified in food and as such requires robust and accurate methods of detection to meet compliance legislation. This study reports the production and characterisation of the first monoclonalantibody (MAb) specific for PA and the subsequent development of a surface plasmon resonance (SPR) biosensorassay for the quantification of PA. The developed assay was compared with an SPR based commercial kit which utilised a polyclonal antibody (PAb). Foodstuffs, including cereals (n = 43), infant formulas and baby food (n = 10) and fruit juices (n = 48) were analysed by both the MAb and PAb biosensorassays and comparison plots showed good correlation (R2 0.77–0.99). The results indicate that the MAb basedbiosensorassay is suitable for the measurement of PA in foodstuffs and has the added advantage of facilitating a constant, long term supply of identical antibody. Preliminary matrix studies suggest the MAb basedassay is an excellent candidate for further validation studies and routine quality assurance based analysis.
Resumo:
Cover-title.
Resumo:
Includes bibliographies.
Resumo:
This study evaluated the effects of different amino acid formulations on supporting meiotic and cytoplasmic maturation of rhesus monkey (Macacca mulatta) oocytes in vitro. Five hundred and forty-six cumulus-oocyte complexes (COCs) aspirated from unstimulated adult monkey follicles (greater than or equal to 1000 mum in diameter) were cultured in either modified Connaught Medical Research Laboratories 1066 medium (mCMRL-1066) or in one of eight chemically defined media (modified basic medium 5 supplemented with 5.5 mmol glucose l(-1), 0.003 mmol pantothenic acid l(-1) and different amino acid formulations) as below: (1) modified basic medium 5 (mBM5) containing no amino acid; (2) mBM5 + 0.2 mmol glutamine l(-1); (3) mBM5 + 11 amino acids from hamster embryo culture medium 6 (HECM-6) (11 AA); (4) mBM5 + Eagle's non-essential amino acids (NEA); (5) mBM5 + NEA + 0.2 mmol glutamine l(-1); (6) mBM5 + Eagle's essential amino acids (EA) without glutamine; (7) mBM5 + EA + 0.2 mmol glutamine l(-1); (8) mBM5 + Eagle's 20 amino acids (20 AA) + 0.2 mmol glutamine l(-1); and (9) mCMRL-1066 (control). All media contained FSH, LH, oestradiol and progesterone. After maturation, mature oocytes were subjected to the same fertilization and embryo culture procedures. COCs matured in treatment 5 had greater potential to progress to metaphase II (66%; P < 0.05) than did those in treatments 1 (37.3%), 2 (48.3%)f 3 (41%), 6 (41%) and 9 (43%). Oocytes matured in treatment 8 had the best morula (53%) and blastocyst (18%) developmental responses (P<0.05). The lowest (P<0.05) morula and blastocyst developmental responses were obtained from COCs matured in treatments 1 (0%) and 6 (8%). The other media supported intermediate embryonic development (range 11-38% of morula and blastocyst). These results indicate that the choice of amino acids affects the competence of oocyte maturation and that Eagle's 20 AA with 0.2 mmol glutamine l(-1) is more efficient than the other amino acid formulations for maturation of rhesus monkey oocytes.
Resumo:
Activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) is associated with increased fatty acid catabolism and is commonly targeted for the treatment of hyperlipidemia. To identify latent, endogenous biomarkers of PPARalpha activation and hence increased fatty acid beta-oxidation, healthy human volunteers were given fenofibrate orally for 2 weeks and their urine was profiled by UPLC-QTOFMS. Biomarkers identified by the machine learning algorithm random forests included significant depletion by day 14 of both pantothenic acid (>5-fold) and acetylcarnitine (>20-fold), observations that are consistent with known targets of PPARalpha including pantothenate kinase and genes encoding proteins involved in the transport and synthesis of acylcarnitines. It was also concluded that serum cholesterol (-12.7%), triglycerides (-25.6%), uric acid (-34.7%), together with urinary propylcarnitine (>10-fold), isobutyrylcarnitine (>2.5-fold), (S)-(+)-2-methylbutyrylcarnitine (5-fold), and isovalerylcarnitine (>5-fold) were all reduced by day 14. Specificity of these biomarkers as indicators of PPARalpha activation was demonstrated using the Ppara-null mouse. Urinary pantothenic acid and acylcarnitines may prove useful indicators of PPARalpha-induced fatty acid beta-oxidation in humans. This study illustrates the utility of a pharmacometabolomic approach to understand drug effects on lipid metabolism in both human populations and in inbred mouse models.
Resumo:
The Codex Alimentarius Commission of the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) develops food standards, guidelines and related texts for protecting consumer health and ensuring fair trade practices globally. The major part of the world's population lives in more than 160 countries that are members of the Codex Alimentarius. The Codex Standard on Infant Formula was adopted in 1981 based on scientific knowledge available in the 1970s and is currently being revised. As part of this process, the Codex Committee on Nutrition and Foods for Special Dietary Uses asked the ESPGHAN Committee on Nutrition to initiate a consultation process with the international scientific community to provide a proposal on nutrient levels in infant formulae, based on scientific analysis and taking into account existing scientific reports on the subject. ESPGHAN accepted the request and, in collaboration with its sister societies in the Federation of International Societies on Pediatric Gastroenterology, Hepatology and Nutrition, invited highly qualified experts in the area of infant nutrition to form an International Expert Group (IEG) to review the issues raised. The group arrived at recommendations on the compositional requirements for a global infant formula standard which are reported here.
Resumo:
The nutritional profiles ofCorynebacterium laevaniformans and the other levan synthesizing coryneform organism isolated by Henis and Aschner (1954) have been studied.C. laevaniformans required biotin, thiamine and pantothenic acid for growth while the Henis and Aschner strain required the former two vitamins only. Two of the six strains ofC. laevaniformans had, in addition, a requirement for glutamate.C. laevaniformans has been shown to be able to degrade levan in growing cultures. Some properties of a cell-free levansucrase are described.
Resumo:
The objective of this study was to estimate the prevalence of inadequate micronutrient intake and excess sodium intake among adults age 19 years and older in the city of Sao Paulo, Brazil. Twenty-four hour dietary recall and sociodemographic data were collected from each participant (n=1,663) in a cross-sectional study, Inquiry of Health of Sao Paulo, of a representative sample of the adult population of the city of Sao Paulo in 2003 (ISA-2003). The variability in intake was measured through two replications of the 24-hour recall in a subsample of this population in 2007 (ISA-2007). Usual intake was estimated by the PC-SIDE program (version 1.0, 2003, Department of Statistics, Iowa State University), which uses an approach developed by Iowa State University. The prevalence of nutrient inadequacy was calculated using the Estimated Average Requirement cut-point method for vitamins A and C, thiamin, riboflavin, niacin, copper, phosphorus, and selenium. For vitamin D, pantothenic acid, manganese, and sodium, the proportion of individuals with usual intake equal to or more than the Adequate Intake value was calculated. The percentage of individuals with intake equal to more than the Tolerable Upper Intake Level was calculated for sodium. The highest prevalence of inadequacy for males and females, respectively, occurred for vitamin A (67% and 58%), vitamin C (52% and 62%), thiamin (41% and 50%), and riboflavin (29% and 19%). The adjustment for the within-person variation presented lower prevalence of inadequacy due to removal of within-person variability. All adult residents of Sao Paulo had excess sodium intake, and the rates of nutrient inadequacy were high for certain key micronutrients. J Acad Nutr Diet. 2012;112:1614-1618.
Resumo:
Some non-pathogenic trypanosomatids maintain a mutualistic relationship with a betaproteobacterium of the Alcaligenaceae family. Intensive nutritional exchanges have been reported between the two partners, indicating that these protozoa are excellent biological models to study metabolic co-evolution. We previously sequenced and herein investigate the entire genomes of five trypanosomatids which harbor a symbiotic bacterium (SHTs for Symbiont-Haboring Trypanosomatids) and the respective bacteria (TPEs for Trypanosomatid Proteobacterial Endosymbiont), as well as two trypanosomatids without symbionts (RTs for Regular Trypanosomatids), for the presence of genes of the classical pathways for vitamin biosynthesis. Our data show that genes for the biosynthetic pathways of thiamine, biotin, and nicotinic acid are absent from all trypanosomatid genomes. This is in agreement with the absolute growth requirement for these vitamins in all protozoa of the family. Also absent from the genomes of RTs are the genes for the synthesis of pantothenic acid, folic acid, riboflavin, and vitamin B6. This is also in agreement with the available data showing that RTs are auxotrophic for these essential vitamins. On the other hand, SHTs are autotrophic for such vitamins. Indeed, all the genes of the corresponding biosynthetic pathways were identified, most of them in the symbiont genomes, while a few genes, mostly of eukaryotic origin, were found in the host genomes. The only exceptions to the latter are: the gene coding for the enzyme ketopantoate reductase (EC:1.1.1.169) which is related instead to the Firmicutes bacteria; and two other genes, one involved in the salvage pathway of pantothenic acid and the other in the synthesis of ubiquinone, that are related to Gammaproteobacteria. Their presence in trypanosomatids may result from lateral gene transfer. Taken together, our results reinforce the idea that the low nutritional requirement of SHTs is associated with the presence of the symbiotic bacterium, which contains most genes for vitamin production.
Resumo:
Trabajo realizado por Sergio Sañudo-Wilhelmy, Danielle Monteverde and Laura Gomez-Consarnau
Resumo:
Das Milchsäurebakterium Oenococcus oeni, welches für den biologischen Säureabbau im Wein eingesetzt wird, verstoffwechselt Hexosen über den Phosphoketolaseweg. Dabei können beträchtliche Mengen Acetat entstehen. Die Ursachen dafür wurden untersucht, insbesondere der Fructosestoffwechsel. Außerdem wurde der Hexosetransport untersucht, über den bei O. oeni noch nichts bekannt war. Die Aufnahme von Hexosen in die Zelle erfolgt mit hoher Affinität (KM=10 µM) über einen Symport mit H+, aber mit sehr niedriger spezifischer Aktivität (Vmax=9 U / g TG). Zusätzlich werden Hexosen mit ausreichender Aktivität über (vermutlich erleichterte) Diffusion in die Zelle transportiert, allerdings nur bei hohen Hexosekonzentrationen. Es wurden Gene gefunden, die für ein Hexose- Phosphotransferasesystem kodieren, welches in O. oeni keine bedeutende Rolle beim Transport spielt, aber vermutlich eine regulative Funktion hat. Zur Bildung von Essigsäure tragen verschiedene Faktoren bei: Der Ethanolweg, der in der heterofermentativen Milchsäuregärung die Reoxidation von NAD(P)H bewerkstelligt, ist durch die niedrige spezifische Aktivität der Acetaldehyddehydrogenase limitiert. Diese Limitierung wird noch verstärkt, wenn die zellulären Gehalte von Coenzym A aufgrund von Pantothensäuremangel niedrig sind. O. oeni umgeht durch Bildung von Erythrit die Limitierung, und Acetylphosphat wird nicht zu Ethanol reduziert, sondern als Acetat ausgeschieden. Bei Cofermentation von Hexosen mit externen Elektronenakzeptoren, wie Fructose, Pyruvat oder Sauerstoff, werden letztere zur Reoxidation von NAD(P)H genutzt, und als Folge wird Acetat ausgeschieden. Der Fluss von Fructose in den Phosphoketolaseweg wird durch das Enzym Phosphoglucoseisomerase verhindert, wenn dieses durch 6-Phosphogluconat gehemmt wird. Als Konsequenz wird Fructose im Mannitweg reduziert, was die Bildung von Essigsäure im Phosphoketolaseweg fördert. Bei niedrigen Wachstums- und Stoffwechselraten, z.B. bei C-Limitierung, ist der Ethanolweg nicht limitierend für den Stoffwechsel, und Hexosen werden über heterofermentative Milchsäuregärung umgesetzt, ohne daß Acetat entsteht. Pyruvat kann gleichzeitig als Elektronenakzeptor und als Energiequelle dienen: O. oeni ist in der Lage, Pyruvat mittels Disproportionierung zu Lactat und Acetat+CO2 zu fermentieren, und dabei Energie zu konservieren (0,5 ATP / Pyruvat).
Resumo:
1. Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest that CYP2D6 may have a function in the central nervous system. 2. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type (WT) C57BL/6 mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including the CYP2D6 gene and 5'- and 3'-flanking sequences. 3. Human CYP2D6 was expressed not only in the liver but also in the brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice, either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of L-carnitine, acetyl-L-carnitine, pantothenic acid, 2'-deoxycytidine diphosphate (dCDP), anandamide, N-acetylglucosaminylamine and a down-regulation of stearoyl-L-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. 4. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function.