954 resultados para pancreatic beta-cell


Relevância:

100.00% 100.00%

Publicador:

Resumo:

increasing prevalence of obesity combined with longevity will produce an epidemic of Type 2 (non-insulin-dependent) diabetes in the next 20 years. This. disease is associated with defects in insulin secretion, specifically abnormalities of insulin secretory kinetics and pancreatic beta-cell glucose responsiveness. Mechanisms underlying beta-cell dysfunction include glucose toxicity, lipotoxicity and beta-cell hyperactivity. Defects at various sites in beta-cell signal transduction pathways contribute, but no single lesion can account for the common form of Type 2 diabetes. Recent studies highlight diverse beta-cell actions of GLP-1 (glucagon-like peptide-1) and GIP (glucose-dependent insulinotropic polypeptide). These intestinal hormones target the beta-cell to stimulate glucose-dependent insulin secretion through activation of protein kinase A and associated pathways. Both increase gene expression and proinsulin biosynthesis, protect against apoptosis and stimulate replication/neogenesis of beta-cells. Incretin hormones therefore represent an exciting future multi-action solution to correct beta-cell defect in Type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic exposure of pancreatic beta-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to beta-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic beta-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to beta-cell incubations at 100 mu M, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Delta(3.5),Delta(2.4)-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P < 0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-kappa B (nuclear factor kappa B) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective beta-cell action, which may be beneficial to function and survival in the `lipotoxic` environment commonly associated with Type 2 diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phosphoERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signals and molecular mechanisms that regulate the replication of terminally differentiated beta cells are unknown. Here, we report the identification and characterization of transmembrane protein 27 (Tmem27, collectrin) in pancreatic beta cells. Expression of Tmem27 is reduced in Tcf1(-/-) mice and is increased in islets of mouse models with hypertrophy of the endocrine pancreas. Tmem27 forms dimers and its extracellular domain is glycosylated, cleaved and shed from the plasma membrane of beta cells. This cleavage process is beta cell specific and does not occur in other cell types. Overexpression of full-length Tmem27, but not the truncated or soluble protein, leads to increased thymidine incorporation, whereas silencing of Tmem27 using RNAi results in a reduction of cell replication. Furthermore, transgenic mice with increased expression of Tmem27 in pancreatic beta cells exhibit increased beta cell mass. Our results identify a pancreatic beta cell transmembrane protein that regulates cell growth of pancreatic islets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Glucagon-like peptide-1 receptor (GLP-1R) is a molecular target for imaging of pancreatic beta cells. We compared the ability of [Nle(14),Lys(40)(Ahx-NODAGA-(64)Cu)NH2]-exendin-4 ([(64)Cu]NODAGA-exendin-4) and [Nle(14),Lys(40)(Ahx-NODAGA-(68)Ga)NH2]-exendin-4 ([(68)Ga]NODAGA-exendin-4) to detect native pancreatic islets in rodents. PROCEDURES The stability, lipophilicity and affinity of the radiotracers to the GLP-1R were determined in vitro. The biodistribution of the tracers was assessed using autoradiography, ex vivo biodistribution and PET imaging. Estimates for human radiation dosimetry were calculated. RESULTS We found GLP-1R-specific labelling of pancreatic islets. However, the pancreas could not be visualised in PET images. The highest uptake of the tracers was observed in the kidneys. Effective dose estimates for [(64)Cu]NODAGA-exendin-4 and [(68)Ga]NODAGA-exendin-4 were 0.144 and 0.012 mSv/MBq, respectively. CONCLUSION [(64)Cu]NODAGA-exendin-4 might be more effective for labelling islets than [(68)Ga]NODAGA-exendin-4. This is probably due to the lower specific radioactivity of [(68)Ga]NODAGA-exendin-4 compared to [(64)Cu]NODAGA-exendin-4. The radiation dose in the kidneys may limit the use of [(64)Cu]NODAGA-exendin-4 as a clinical tracer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The positional relationships among all of the visible organelles in a densely packed region of cytoplasm from an insulin secreting, cultured mammalian cell have been analyzed in three dimensions (3-D) at ≈6 nm resolution. Part of a fast frozen/freeze-substituted HIT-T15 cell that included a large portion of the Golgi ribbon was reconstructed in 3-D by electron tomography. The reconstructed volume (3.1 × 3.2 × 1.2 μm3) allowed sites of interaction between organelles, and between microtubules and organellar membranes, to be accurately defined in 3-D and quantitatively analyzed by spatial density analyses. Our data confirm that the Golgi in an interphase mammalian cell is a single, ribbon-like organelle composed of stacks of flattened cisternae punctuated by openings of various sizes [Rambourg, A., Clermont, Y., & Hermo, L. (1979) Am. J. Anat. 154, 455–476]. The data also show that the endoplasmic reticulum (ER) is a single continuous compartment that forms close contacts with mitochondria, multiple trans Golgi cisternae, and compartments of the endo-lysosomal system. This ER traverses the Golgi ribbon from one side to the other via cisternal openings. Microtubules form close, non-random associations with the cis Golgi, the ER, and endo-lysosomal compartments. Despite the dense packing of organelles in this Golgi region, ≈66% of the reconstructed volume is calculated to represent cytoplasmic matrix. We relate the intimacy of structural associations between organelles in the Golgi region, as quantified by spatial density analyses, to biochemical mechanisms for membrane trafficking and organellar communication in mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic beta cells exhibit oscillations in electrical activity, cytoplasmic free Ca2+ concentration ([Ca2+](i)), and insulin release upon glucose stimulation. The mechanism by which these oscillations are generated is not known. Here we demonstrate fluctuations in the activity of the ATP-dependent K+ channels (K(ATP) channels) in single beta cells subject to glucose stimulation or to stimulation with low concentrations of tolbutamide. During stimulation with glucose or low concentrations of tolbutamide, K(ATP) channel activity decreased and action potentials ensued. After 2-3 min, despite continuous stimulation, action potentials subsided and openings of K(ATP) channels could again be observed. Transient suppression of metabolism by azide in glucose-stimulated beta cells caused reversible termination of electrical activity, mimicking the spontaneous changes observed with continuous glucose stimulation. Thus, oscillations in K(ATP) channel activity during continuous glucose stimulation result in oscillations in electrical activity and [Ca2+](i).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pancreatic islet amyloid deposits are a characteristic pathologic feature of non-insulin-dependent diabetes mellitus and contain islet amyloid polypeptide (IAPP; amylin). We used transgenic mice that express human IAPP in pancreatic beta cells to explore the potential role of islet amyloid in the pathogenesis of non-insulin-dependent diabetes mellitus. Extensive amyloid deposits were observed in the pancreatic islets of approximately 80% of male transgenic mice > 13 months of age. Islet amyloid deposits were rarely observed in female transgenic mice (11%) and were never seen in nontransgenic animals. Ultrastructural analysis revealed that these deposits were composed of human IAPP-immunoreactive fibrils that accumulated between beta cells and islet capillaries. Strikingly, approximately half of the mice with islet amyloid deposits were hyperglycemic (plasma glucose > 11 mM). In younger (6- to 9-month-old) male transgenic mice, islet amyloid deposits were less commonly observed but were always associated with severe hyperglycemia (plasma glucose > 22 mM). These data indicate that expression of human IAPP in beta cells predisposes male mice to the development of islet amyloid and hyperglycemia. The frequent concordance of islet amyloid with hyperglycemia in these mice suggests an interdependence of these two conditions and supports the hypothesis that islet amyloid may play a role in the development of hyperglycemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conditional oncogene expression in transgenic mice is of interest for studying the oncoprotein requirements during tumorigenesis and for deriving cell lines that can be induced to undergo growth arrest and enhance their differentiated functions. We utilized the bacterial tetracycline (Tet)-resistance operon regulatory system (tet) from Tn10 of Escherichia coli to control simian virus 40 (SV40) large tumor (T) antigen (TAg) gene expression and to generate conditionally transformed pancreatic beta cells in transgenic mice. A fusion protein containing the tet repressor (tetR) and the activating domain of the herpes simplex virus protein VP16, which converts the repressor into a transcription activator, was produced in beta cells of transgenic mice under control of the insulin promoter. In a separate lineage of transgenic mice, the TAg gene was introduced under control of a tandem array of tet operator sequences and a minimal promoter, which by itself is not sufficient for gene expression. Mice from the two lineages were then crossed to generate double-transgenic mice. Expression of the tetR fusion protein in beta cells activated TAg transcription, resulting in the development of beta-cell tumors. Tumors arising in the absence of Tet were cultured to derive a stable beta-cell line. Cell incubation in the presence of Tet led to inhibition of proliferation, as shown by decreased BrdUrd and [3H]thymidine incorporation. The Tet derivative anhydrotetracycline showed a 100-fold stronger inhibition compared with Tet. When administered in vivo, Tet efficiently inhibited beta-cell proliferation. These findings indicate that transformed beta cells selected for growth during a tumorigenesis process in vivo maintain a dependence on the continuous presence of the TAg oncoprotein for their proliferation. This system provides an approach for generation of beta-cell lines for cell therapy of diabetes as well as conditionally transformed cell lines from other cell types of interest.