8 resultados para paleovegetation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Northeastern Brazil represents a strategic area in terms of Quaternary records of environmental changes in South America due to its distinct semi-arid climate in near equatorial latitudes. In this study, carbon isotope and charcoal distribution records in soils are used to characterize vegetation dynamics, forest fires and their relation to climate change since the Late Pleistocene in the States of Ceara, Piaui and Paraiba, Northeastern Brazil. At the Ceara site, the carbon isotope record showed an enrichment trend from -24%(o) to 19%(o) during the early-mid Holocene, indicating an opening of vegetation and expansion of savanna vegetation (C(4) plants) during this period. A trend toward more depleted delta(13)C values (similar to-32%.) in the late Holocene indicates an expansion of forest vegetation (C(3) plants). A similar trend is observed at the Piaui and Paraiba sites where values of similar to-24%0 are associated with open forest vegetation during the late Pleistocene. In the early-mid Holocene, delta(13)C values of up to -18.0%(o), suggest the expansion of C4 plants. Based on the carbon isotope data, it is postulated that from similar to 18,000 cal yr B.P. to similar to 11,800 cal yr B.P.-similar to 10,000 cal yr B.P. arboreal vegetation was dominant in northeastern Brazil and is associated with humid climates. The savanna expanded from similar to 10,000 cal yr B.P. to similar to 4500-3200 cal yr B.P. due to a less humid/drier climatic phase, also supported by the significant presence of fires (charcoal fragments in the soil). From approximately 3200-2000 cal yr B.P. to the present, carbon isotope records suggest forest expansion and a more humid phase. These results form part of a regional pattern since they are in agreement with paleovegetation records obtained in regions of Maranhao, northeastern Brazil and in the Amazon and Rondonia States, northern Brazil. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dark subsurface horizons, with properties similar to the sombric horizon characterized by the USA Soil Taxonomy, are frequent in Southern Brazil. The genesis of this horizon is controversial and poorly understood. This study aimed to describe the occurrence of sombric-like horizons in Ultisols in the South of Santa Catarina State, at low altitudes, and suggest possible processes of humus transference, accumulation and persistence in these horizons. Physical, chemical and mineralogical properties of four Ultisols were evaluated; three were sampled in a toposequence, and another representative one in an isolated profile (RSP). The dark subsurface horizons coincide with the AB and BA transitional genetic horizons; they are acid, low in base saturation, and have a similar clay mineralogy in all horizons. Very high amounts of Fe and Al extracted by ammonium oxalate and sodium pyrophosphate solution as well as maximum Al extracted by CuCl2 solution were observed in these dark subsurface horizons, indicating a possible migration of these elements in the form of organometallic complexes. The contents of Al plus ½ Fe extracted from the RSP soil horizons with ammonium oxalate indicated spodic materials in the sombric-like horizon, although the soil morphology was not compatible with Spodosols. Maximum contents of fine clay were also found in the sombric-like horizon, suggesting Fe and Al migration as clay-humic substances. However, the hypothesis that sombric-like horizons in these soils are a relict feature of a grass paleovegetation, different from the current dense seasonal forest, should not be discarded but investigated in further studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five paired global climate model experiments, one with an ice pack that only responds thermodynamically (TI) and one including sea-ice dynamics (DI), were used to investigate the sensitivity of Arctic climates to sea-ice motion. The sequence of experiments includes situations in which the Arctic was both considerably colder (Glacial Inception, ca 115,000 years ago) and considerably warmer (3 × CO2) than today. Sea-ice motion produces cooler anomalies year-round than simulations without ice dynamics, resulting in reduced Arctic warming in warm scenarios and increased Arctic cooling in cold scenarios. These changes reflect changes in atmospheric circulation patterns: the DI simulations favor outflow of Arctic air and sea ice into the North Atlantic by promoting cyclonic circulation centered over northern Eurasia, whereas the TI simulations favor southerly inflow of much warmer air from the North Atlantic by promoting cyclonic circulation centered over Greenland. The differences between the paired simulations are sufficiently large to produce different vegetation cover over >19% of the land area north of 55°N, resulting in changes in land-surface characteristics large enough to have an additional impact on climate. Comparison of the DI and TI experiments for the mid-Holocene (6000 years ago) with paleovegetation reconstructions suggests the incorporation of sea-ice dynamics yields a more realistic simulation of high-latitude climates. The spatial pattern of sea-ice anomalies in the warmer-than-modern DI experiments strongly resembles the observed Arctic Ocean sea-ice dipole structure in recent decades, consistent with the idea that greenhouse warming is already impacting the high-northern latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regional climate simulations are conducted using the Polar fifth-generation Pennsylvania State University (PSU)-NCAR Mesoscale Model (MM5) with a 60-km horizontal resolution domain over North America to explore the summer climate of the Last Glacial Maximum (LGM: 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. The simulated LGM summer climate is characterized by a pronounced low-level thermal gradient along the southern margin of the LIS resulting from the juxtaposition of the cold ice sheet and adjacent warm ice-free land surface. This sharp thermal gradient anchors the midtropospheric jet stream and facilitates the development of synoptic cyclones that track over the ice sheet, some of which produce copious liquid precipitation along and south of the LIS terminus. Precipitation on the southern margin is orographically enhanced as moist southerly low-level flow (resembling a contemporary, Great Plains low-level jet configuration) in advance of the cyclone is drawn up the ice sheet slope. Composites of wet and dry periods on the LIS southern margin illustrate two distinctly different atmospheric flow regimes. Given the episodic nature of the summer rain events, it may be possible to reconcile the model depiction of wet conditions on the LIS southern margin during the LGM summer with the widely accepted interpretation of aridity across the Great Plains based on geological proxy evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimized regional climate simulations are conducted using the Polar MM5, a version of the fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5), with a 60-km horizontal resolution domain over North America during the Last Glacial Maximum (LGM, 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). The objective is to describe the LGM annual cycle at high spatial resolution with an emphasis on the winter atmospheric circulation. Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. Polar MM5 produces a substantially different atmospheric response to the LGM boundary conditions than CCM3 and other recent GCM simulations. In particular, from November to April the upper-level flow is split around a blocking anticyclone over the LIS, with a northern branch over the Canadian Arctic and a southern branch impacting southern North America. The split flow pattern is most pronounced in January and transitions into a single, consolidated jet stream that migrates northward over the LIS during summer. Sensitivity experiments indicate that the winter split flow in Polar MM5 is primarily due to mechanical forcing by LIS, although model physics and resolution also contribute to the simulated flow configuration. Polar MM5 LGM results are generally consistent with proxy climate estimates in the western United States, Alaska, and the Canadian Arctic and may help resolve some long-standing discrepancies between proxy data and previous simulations of the LGM climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution multi-proxy record from Lake Van, eastern Anatolia, derived from a lacustrine sequence cored at the 357 m deep Ahlat Ridge (AR), allows a comprehensive view of paleoclimate and environmental history in the continental Near East during the last interglacial (LI). We combined paleovegetation (pollen), stable oxygen isotope (d18Obulk) and XRF data from the same sedimentary sequence, showing distinct variations during the period from 135 to 110 ka ago leading into and out of full interglacial conditions. The last interglacial plateau, as defined by the presence of thermophilous steppe-forest communities, lasted ca. 13.5 ka, from ~129.1-115.6 ka BP. The detailed palynological sequence at Lake Van documents a vegetation succession with several climatic phases: (I) the Pistacia zone (ca. 131.2-129.1 ka BP) indicates summer dryness and mild winter conditions during the initial warming, (II) the Quercus-Ulmus zone (ca. 129.1-127.2 ka BP) occurred during warm and humid climate conditions with enhanced evaporation, (III) the Carpinus zone (ca. 127.2-124.1 ka BP) suggest increasingly cooler and wetter conditions, and (IV) the expansion of Pinus at ~124.1 ka BP marks the onset of a colder/drier environment that extended into the interval of global ice growth. Pollen data suggest migration of thermophilous trees from refugial areas at the beginning of the last interglacial. Analogous to the current interglacial, the migration documents a time lag between the onset of climatic amelioration and the establishment of an oak steppe-forest, spanning 2.1 ka. Hence, the major difference between the last interglacial compared to the current interglacial (Holocene) is the abundance of Pinus as well as the decrease of deciduous broad-leaved trees, indicating higher continentality during the last interglacial. Finally, our results demonstrate intra-interglacial variability in the low mid-latitudes and suggest a close connection with the high-frequency climate variability recorded in Greenland ice cores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abrupt climate changes from 18 to 15 thousand years before present (kyr BP) associated with Heinrich Event 1 (HE1) had a strong impact on vegetation patterns not only at high latitudes of the Northern Hemisphere, but also in the tropical regions around the Atlantic Ocean. To gain a better understanding of the linkage between high and low latitudes, we used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era, the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). We calculated mega-biomes from the plant-functional types (PFTs) generated by the model to allow for a direct comparison between model results and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well with biome reconstructions of the modern and LGM time slices, respectively, except that our pre-industrial simulation predicted the dominance of grassland in southern Europe and our LGM simulation resulted in more forest cover in tropical and sub-tropical South America. The HE1-like simulation with a glacial climate background produced sea-surface temperature patterns and enhanced inter-hemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. We found that the cooling of the Northern Hemisphere caused a southward shift of those PFTs that are indicative of an increased desertification and a retreat of broadleaf forests in West Africa and northern South America. The mega-biomes from our HE1 simulation agreed well with paleovegetation data from tropical Africa and northern South America. Thus, according to our model-data comparison, the reconstructed vegetation changes for the tropical regions around the Atlantic Ocean were physically consistent with the remote effects of a Heinrich event under a glacial climate background.