861 resultados para paediatric intensive care


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
The power of the randomised controlled trial depends upon its capacity to operate in a closed system whereby the intervention is the only causal force acting upon the experimental group and absent in the control group, permitting a valid assessment of intervention efficacy. Conversely, clinical arenas are open systems where factors relating to context, resources, interpretation and actions of individuals will affect implementation and effectiveness of interventions. Consequently, the comparator (usual care) can be difficult to define and variable in multi-centre trials. Hence outcomes cannot be understood without considering usual care and factors that may affect implementation and impact on the intervention.

Methods
Using a fieldwork approach, we describe PICU context, ‘usual’ practice in sedation and weaning from mechanical ventilation, and factors affecting implementation prior to designing a trial involving a sedation and ventilation weaning intervention. We collected data from 23 UK PICUs between June and November 2014 using observation, individual and multi-disciplinary group interviews with staff.

Results
Pain and sedation practices were broadly similar in terms of drug usage and assessment tools. Sedation protocols linking assessment to appropriate titration of sedatives and sedation holds were rarely used (9 % and 4 % of PICUs respectively). Ventilator weaning was primarily a medical-led process with 39 % of PICUs engaging senior nurses in the process: weaning protocols were rarely used (9 % of PICUs). Weaning methods were variably based on clinician preference. No formal criteria or use of spontaneous breathing trials were used to test weaning readiness. Seventeen PICUs (74 %) had prior engagement in multi-centre trials, but limited research nurse availability. Barriers to previous trial implementation were intervention complexity, lack of belief in the evidence and inadequate training. Facilitating factors were senior staff buy-in and dedicated research nurse provision.

Conclusions
We examined and identified contextual and organisational factors that may impact on the implementation of our intervention. We found usual practice relating to sedation, analgesia and ventilator weaning broadly similar, yet distinctively different from our proposed intervention, providing assurance in our ability to evaluate intervention effects. The data will enable us to develop an implementation plan; considering these factors we can more fully understand their impact on study outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two major difficulties arise when taking blood samples in children: the challenge of venous access and the comparatively large amount of blood required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The mortality rate in paediatric intensive care units (PICU) has fallen over the last two decades. More advanced treatment is offered to children with life-threatening disease and there is substantial interest in knowing whether long term outcome and quality of life after intensive care are acceptable. SETTING: 12-bed paediatric and neonatal intensive care unit. INTERVENTION: Prospective follow-up study with telephone interview 1 and 2 years after discharge. METHODS: Four domains of quality of life (physical function, role function, social-emotional function and health problem) were recorded by calculating the health state classification (HSC) index. Outcome was classified good (HSC 1.0-0.7), moderate (HSC 0.69-0.3), poor (HSC 0.29-0) and very poor (HSC <0). RESULTS: 661 patients were admitted to the PICU in the year 2001 with a mortality within the unit of 3.9%. Over 2 years follow-up there were 21 additional deaths (3.2%). 574 patients could be followed up after 1 year and 464 patients after 2 years. After two years the outcome was good in 77%, moderate in 15% and poor in 8%. Patients with respiratory disease had the best outcome, similar to those admitted for neurological and medical reasons. Patients admitted for postoperative care and for cardiovascular disease had a poorer quality of life. 31% of the children had preexisting health care problems and 21% of all patients had new chronic disease after intensive care. CONCLUSION: The majority of survivors admitted to the PICU have a good outcome. The overall mortality rate doubled if assessed two years after discharge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paediatric intensive care is an expanding specialty that has been shown to improve the quality of care provided to critically ill children. An important aspect of the management of critically ill children includes the provision of effective sedation to reduce stress and anxiety during their stay in intensive care. However, to achieve effective and safe sedation in these children, is recognised as a challenge that is not without risk. Often children receive too much or too little sedation resulting in over sedation or under sedation respectively. These problems have arisen owing to a lack of information regarding altered pharmacokinetics and pharmacodynamics of medicines administered to critically ill children. In addition there are few validated sedation scoring systems in practice with which to monitor level of sedation and titrate medication appropriately. This study consisted of two stages. Stage 1 investigated the reproducibility and practicality of two observational sedation assessment scales for use in critically ill children. The two scales were different in design, the first being simple in design requiring a single assessment of the patient. The second was more complex in design requiring assessment of five patient parameters to obtain an overall sedation score. Both scales were found to achieve good reproducibility (kappa values 0.50 and 0.62 respectively). Practicality of each sedation scale was undertaken by obtaining nursing staff opinion about both scales using questionnaire and interview technique. It was established that nursing staff preferred the second, more complex sedation scale mainly because it was perceived to give a more accurate assessment of level of sedation and anxiety rather than merely level of sedation. Stage 2 investigated the pharmacokinetics and pharmacodynamics of midazolam in critically ill children. 52 children, aged between 0 and 18 years were recruited to the study and 303 blood samples taken to analyse midazolam and its metabolites, I-hydroxyrnidazolam (I-OR) and 4-hydroxymidazolam (4-0H). Analysis of plasma was undertaken using high performance liquid chromatography. A significant correlation was found between midazolam plasma concentration and sedative effect (r=0.598, p=O.OI). It was found that a midazolam plasma concentration of 223ng/ml (±31.9) achieved a satisfactory level of sedation. Only a poor correlation was found between dose of midazolam and plasma concentration of midazolam. Similarly only a poor correlation was found between sedative effect and dose of midazolam. Clearance of midazolam was found to be 6.3mllkglmin (±0.36), which is lower than that reported in healthy children (9.Il-13.3mllkg/min). Age related differences in midazolam clearance were observed in the study. Neonates produced the lowest clearance values (l.63mllkg/min), compared to children aged 1 to 12 months (8.52mllkg/min) who achieved the highest clearance values. Clearance was found to decrease after the age of 12 months to values of 5.34mllkglmin in children aged 7 years and above. Patients with renal (n=5) and liver impairment (n~4) were found to have reduced midazolam clearance (1.37 and 0.74ml/kg/min respectively). Plasma concentrations of I-OH and 4-0H ranged from 0-5 1 89nglml and 0-27 Inglml respectively. All children were found to be capable of producing both metabolites irrespective of age, although no trend was established between age and extent of production of either metabolite. Disease state was found to affect production of l-OH. Patients with renal impairment (n=5) produced the lowest I-OH midazolam plasma ratio (0.059) compared to patients with head injury (0.858). Patients with severe liver impairment were found to be capable of manufacturing both metabolites despite having a severely damaged liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Limiting the amount of alcohol in children's medicines is advisable but as alcohol is the second most common solvent used in liquid preparations, paediatric patients with increased medication intake may be exposed to a considerable alcohol intake. Few medicines are specifically designed for children in Paediatric Intensive Care (PICU), and therefore adult formulations are frequently administered, with high medication use further exposing a PICU patient to undesired alcohol intake. Aims - This small pilot study aimed to examiine the intake of a sample of PICU patients, highlight common medicines used on PICU containing alcohol, provide alternatives where possible and where alternatives are not possible, provide the prescriber with a list of the higher alcohol containing medicines. Method - A retrospective medication chart review was undertaken as a two point snap shot. Data collected included age, weight, medications prescribed and the formulations used at time of the study. The patients' sedation score was recorded. The electronic medicine compendium (EMC) was consulted for any ethanol content for the commercially available products. The manufacturer was contacted for ethanol content of all ‘specials’ and any commercial products found to contain ethanol from the EMC. The PICU patient's daily intake of ethanol was calculated. The calculation was converted to an adult equivalent alcohol unit intake and although this method of conversion is crude and does not take physiological differences of adult and children into account, it was done in order to provide the clinician with commonly used terminology in deciding the risk to the patient. Results - Twenty-eight patients were prescribed a range of 69 different medications. Of the 69 medicines, 12 products were found to contain ethanol. Patient ages ranged from a 26 week premature infant to 15 years old, weights ranges from 0.7 kg to 45 kg. Only 2 out of the 28 patients did not receive ethanol containing medications, and most patients were prescribed at least two medicines containing ethanol. Daily ethanol intake uncorrected for weight ranged from 0.006 ml to 2.18 ml (median 0.26 ml). Converting this to adult units per week, alcohol intake ranged from 0.07 to 15.2 units (median 1.4 units). The two patients receiving above 15 units/week adult equivalent were prescribed an oral morphine weaning regimen, therefore the high alcohol exposure was short term. The most common drugs prescribed containing alcohol were found to be nystatin, ranitidine, furosemide and morphine. No commercially available alcohol-free oral liquid preparations were found for ranitidine, furosemide or morphine at the time of the study. Correlation of the sedation score against ethanol intake was difficult to analyse as most patients were actively sedated. Conclusions - Polypharmacy in PICU patients increases the exposure to alcohol. Some commercially available medicines provide excessive ethanol intake, providing the clinician with ethical, potentially economical dilemmas of prescribing an unlicensed medicine to minimise ethanol exposure. Further research is required to evaluate the scope of the problem, effects of exposure and provision of alcohol free formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute life-threatening events are mostly predictable in adults and children. Despite real-time monitoring these events still occur at a rate of 4%. This paper describes an automated prediction system based on the feature space embedding and time series forecasting methods of the SpO2 signal; a pulsatile signal synchronised with heart beat. We develop an age-independent index of abnormality that distinguishes patient-specific normal to abnormal physiology transitions. Two different methods were used to distinguish between normal and abnormal physiological trends based on SpO2 behaviour. The abnormality index derived by each method is compared against the current gold standard of clinical prediction of critical deterioration. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

here is an increasing number of reports of propylene glycol (PG) toxicity in the literature, regardless of its inclusion on the Generally Recognized as Safe List (GRAS).1 PG is an excipient used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Method A snapshot of 50 PICU patients oral or intravenous medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists' opinions on PG intake was sought via e-survey. Results The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52%) were parenteral formulations. Median weight of the patients was 5.5 kg (range 2–50 kg), ages ranged from 1 day to 13 years of age. Eleven of the patients were classed as renally impaired (defined as 1.5 times the baseline creatinine). Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received at least one prescription containing PG and 29/38 of these patients were receiving formulations that contained excipients that may have competed with the metabolic pathways of PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day. Total intake was inconclusive for 2 patients due to a of lack of availability of information from the manufacturer; these formulations were licensed but used in for off-label indications. Five commonly used formulations contributed to higher intakes of PG, namely co-trimoxazole, dexamethasone, potassium chloride, dipyridamole and phenobarbitone. Lactate levels were difficult to interpret due to the underlying conditions of the patients. One of the sixteen intensivist was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions Certain formulations used on PICU can considerably increase PG exposure to patients. Due to a lack of awareness of PG content, these should be highlighted to the clinician to assist with making informed decisions regarding risks versus benefits in continuing that drug, route of administration or formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an increasing number of reports of propylene glycol (PG) toxicity in the literature, regardless of its inclusion on the Generally Recognized as Safe List (GRAS).1 PG is an excipient used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Method A snapshot of 50 PICU patients oral or intravenous medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists' opinions on PG intake was sought via e-survey. Results The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52%) were parenteral formulations. Median weight of the patients was 5.5 kg (range 2–50 kg), ages ranged from 1 day to 13 years of age. Eleven of the patients were classed as renally impaired (defined as 1.5 times the baseline creatinine). Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received at least one prescription containing PG and 29/38 of these patients were receiving formulations that contained excipients that may have competed with the metabolic pathways of PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day. Total intake was inconclusive for 2 patients due to a of lack of availability of information from the manufacturer; these formulations were licensed but used in for off-label indications. Five commonly used formulations contributed to higher intakes of PG, namely co-trimoxazole, dexamethasone, potassium chloride, dipyridamole and phenobarbitone. Lactate levels were difficult to interpret due to the underlying conditions of the patients. One of the sixteen intensivist was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions Certain formulations used on PICU can considerably increase PG exposure to patients. Due to a lack of awareness of PG content, these should be highlighted to the clinician to assist with making informed decisions regarding risks versus benefits in continuing that drug, route of administration or formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There are increasing reports of propylene glycol (PG) toxicity, which is used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Methods: A snapshot of 50 patients’ medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists opinions on PG intake was sought via e-survey. Results: The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52 %) were parenteral formulations. Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received drugs with PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day, with 29/38 receiving formulations with concomitant pathway competing excipients. The total amount could not be quantified in two cases due to lack of availability of information from the manufacturer. Four commonly used formulations contributed to higher intakes of PG. Only 1/16intensivists was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions: Certain formulations used on PICU can considerably increase PG exposure to patients. These should be highlighted to the clinician to make an informed decision regarding risks versus benefits in continuing that drug or formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Anaemia is common in critically ill patients, and has a significant negative impact on patients' recovery. Blood conservation strategies have been developed to reduce the incidence of iatrogenic anaemic caused by sampling for diagnostic testing. Objectives Describe practice and local guidelines in adult, paediatric and neonatal Australian intensive care units (ICUs) regarding blood sampling and conservation strategies. Methods Cross-sectional descriptive study, conducted July 2013 over one week in single adult, paediatric and neonatal ICUs in Brisbane. Data were collected on diagnostic blood samples obtained during the study period, including demographic and acuity data of patients. Institutional blood conservation practice and guidelines were compared against seven evidence-based recommendations. Results A total of 940 blood sampling episodes from 96 patients were examined across three sites. Arterial blood gas was the predominant reason for blood sampling in each unit, accounting for 82% of adult, 80% of paediatric and 47% of neonatal samples taken (p <. 0.001). Adult patients had significantly more median [IQR] samples per day in comparison to paediatrics and neonates (adults 5.0 [2.4]; paediatrics 2.3 [2.9]; neonatal 0.7 [2.7]), which significantly increased median [IQR] blood sampling costs per day (adults AUD$101.11 [54.71]; paediatrics AUD$41.55 [56.74]; neonatal AUD$8.13 [14.95]; p <. 0.001). The total volume of samples per day (median [IQR]) was also highest in adults (adults 22.3. mL [16.8]; paediatrics 5.0. mL [1.0]; neonates 0.16. mL [0.4]). There was little information about blood conservation strategies in the local clinical practice guidelines, with the adult and neonatal sites including none of the seven recommendations. Conclusions There was significant variation in blood sampling practice and conservation strategies between critical care settings. This has implications not only for anaemia but also infection control and healthcare costs.