937 resultados para packing geometry


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Geometric packing problems may be formulated mathematically as constrained optimization problems. But finding a good solution is a challenging task. The more complicated the geometry of the container or the objects to be packed, the more complex the non-penetration constraints become. In this work we propose the use of a physics engine that simulates a system of colliding rigid bodies. It is a tool to resolve interpenetration conflicts and to optimize configurations locally. We develop an efficient and easy-to-implement physics engine that is specialized for collision detection and contact handling. In succession of the development of this engine a number of novel algorithms for distance calculation and intersection volume were designed and imple- mented, which are presented in this work. They are highly specialized to pro- vide fast responses for cuboids and triangles as input geometry whereas the concepts they are based on can easily be extended to other convex shapes. Especially noteworthy in this context is our ε-distance algorithm - a novel application that is not only very robust and fast but also compact in its im- plementation. Several state-of-the-art third party implementations are being presented and we show that our implementations beat them in runtime and robustness. The packing algorithm that lies on top of the physics engine is a Monte Carlo based approach implemented for packing cuboids into a container described by a triangle soup. We give an implementation for the SAE J1100 variant of the trunk packing problem. We compare this implementation to several established approaches and we show that it gives better results in faster time than these existing implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The availability of a significant number of the Structures of helical membrane proteins has prompted us to investigate the mode of helix-helix packing. In the present study, we have considered a dataset of alpha-helical membrane proteins representing Structures solved from all the known superfamilies. We have described the geometry of all the helical residues in terms of local coordinate axis at the backbone level. Significant inter-helical interactions have been considered as contacts by weighing the number of atom-atom contacts, including all the side-chain atoms. Such a definition of local axis and the contact criterion has allowed us to investigate the inter-helical interaction in a systematic and quantitative manner. We show that a single parameter (designated as alpha), which is derived from the parameters representing the Mutual orientation of local axes, is able to accurately Capture the details of helix-helix interaction. The analysis has been carried Out by dividing the dataset into parallel, anti-parallel, and perpendicular orientation of helices. The study indicates that a specific range of alpha value is preferred for interactions among the anti-parallel helices. Such a preference is also seen among interacting residues of parallel helices, however to a lesser extent. No such preference is seen in the case of perpendicular helices, the contacts that arise mainly due to the interaction Of Surface helices with the end of the trans-membrane helices. The Study Supports the prevailing view that the anti-parallel helices are well packed. However, the interactions between helices of parallel orientation are non-trivial. The packing in alpha-helical membrane proteins, which is systematically and rigorously investigated in this study, may prove to be useful in modeling of helical membrane proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4 tetrahydropyrimidine-5-carboxyl ates were analyzed in order to understand the effect of variations in functional groups on molecular geometry, conformation and packing of molecules in the crystalline lattice. It is observed that the existence of a short intra-molecular C-H center dot center dot center dot pi interaction between the aromatic hydrogen of the aryl ring with the isolated double bond of the six-membered tetrahydropyrimidine ring is a key feature which imparts additional stability to the molecular conformation in the solid state. The compounds pack via the cooperative involvement of both N-H center dot center dot center dot S=C and N-H center dot center dot center dot O=C intermolecular dimers forming a sheet like structure. In addition, weak C-H center dot center dot center dot O and C-H center dot center dot center dot pi intermolecular interactions provide additional stability to the crystal packing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The supramolecular structures of eight aryl protected ethyl-6-methyl-4-phenyl-2-oxo-1,2,3,4-tetrahydropyrimidine- 5-carboxylates have been analyzed to determine the role of different functional groups on the molecular geometry, conformational characteristics and the packing of these molecules in the crystal lattice. Out of these the para fluoro substituted compound on the aryl ring exhibits conformational polymorphism, due to the different conformation of the ester moiety. This behaviour has been characterized using both powder and single-crystal X-ray diffraction, optical microscopy and differential scanning calorimetry performed on both these polymorphs. The compounds pack via the cooperative interplay of strong N-H center dot center dot center dot O=C intermolecular dimers and chains forming a sheet like structure. In addition, weak C-H center dot center dot center dot O=C and C-H center dot center dot center dot pi interactions impart additional stability to the crystal packing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional structure of very large samples of monodisperse bead packs is studied by means of X-Ray Computed Tomography. We retrieve the coordinatesofeach bead inthe pack and wecalculate the average coordination number by using the tomographic images to single out the neighbors in contact. The results are compared with the average coordination number obtained in Aste et al. (2005) by using a deconvolution technique. We show that the coordination number increases with the packing fraction, varying between 6.9 and 8.2 for packing fractions between 0.59 and 0.64. © 2005 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cutting and packing problems arise in a variety of industries, including garment, wood and shipbuilding. Irregular shape packing is a special case which admits irregular items and is much more complex due to the geometry of items. In order to ensure that items do not overlap and no item from the layout protrudes from the container, the collision free region concept was adopted. It represents all possible translations for a new item to be inserted into a container with already placed items. To construct a feasible layout, collision free region for each item is determined through a sequence of Boolean operations over polygons. In order to improve the speed of the algorithm, a parallel version of the layout construction was proposed and it was applied to a simulated annealing algorithm used to solve bin packing problems. Tests were performed in order to determine the speed improvement of the parallel version over the serial algorithm

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes are well recognised for their ability to improve the delivery of a range of drugs. More commonly they are applied for the delivery of water-soluble drugs, but given their structural attributes they can also be employed as solubilising agents for low solubility drugs as well as drug targeting agents. To further explore the potential of liposomes as solubilising agents, we have investigated the role of bilayer packaging in promoting drug solubilisation in liposome bilayers. The effect of alkyl chain length and symmetry was investigated to consider if using 'mis-matched' phospholipids could be used to create 'voids' within the bilayers, and enhance bilayer loading capacity. Lipid packing was investigated using Langmuir studies, which demonstrated that increasing the alkyl chain length enhanced lipid packing, with condensed monolayer forming, whilst asymmetric lipids formed less condensed monolayers. However this more open packing did not translate into improved drug loading, with the longer chain, condensed bilayers formed from long-chain, saturated lipids offering higher drug loading capacity. These studies demonstrate that liposomes formulated from longer chain, saturated lipids offer enhanced solubilisation capacity. However the molecular size, rather than lipophilicity, of the drug to be incorporated was also a key factor dominating bilayer incorporation efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes are well recognised for their ability to improve the delivery of a range of drugs. More commonly they are applied for the delivery of water-soluble drugs, but given their structural attributes, they can also be employed as solubilising agents for low solubility drugs as well as drug targeting agents. To further explore the potential of liposomes as solubilising agents, we have investigated the role of bilayer packaging in promoting drug solubilisation in liposome bilayers. The effect of alkyl chain length and symmetry was investigated to consider if using 'mis-matched' phospholipids could create 'voids' within the bilayers, and enhance bilayer loading capacity. Lipid packing was investigated using Langmuir studies, which demonstrated that increasing the alkyl chain length enhanced lipid packing, with condensed monolayers forming, whilst asymmetric lipids formed less condensed monolayers. However, this more open packing did not translate into improved drug loading, with the longer chain, condensed bilayers formed from long-chain, saturated lipids offering higher drug loading capacity. These studies demonstrate that liposomes formulated from longer chain, saturated lipids offer enhanced solubilisation capacity. However the molecular size, rather than lipophilicity, of the drug to be incorporated was also a key factor dominating bilayer incorporation efficiency. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a deductive theoretical enquiry into the flow of effects from the geometry of price bubbles/busts, to price indices, to pricing behaviours of sellers and buyers, and back to price bubbles/busts. The intent of the analysis is to suggest analytical approaches to identify the presence, maturity, and/or sustainability of a price bubble. We present a pricing model to emulate market behaviour, including numeric examples and charts of the interaction of supply and demand. The model extends into dynamic market solutions myopic (single- and multi-period) backward looking rational expectations to demonstrate how buyers and sellers interact to affect supply and demand and to show how capital gain expectations can be a destabilising influence – i.e. the lagged effects of past price gains can drive the market price away from long-run market-worth. Investing based on the outputs of past price-based valuation models appear to be more of a game-of-chance than a sound investment strategy.