961 resultados para pH shift process
Resumo:
The inner surface of fused-silica capillaries has been coated with a dense/homogeneous coating of commercial multi-wall carbon nanotubes (MWCNTs) using a stable ink as deposit precursor. Solubilization of the MWCNTs was achieved in water/ethanol/dimethylformamide by the action of a surfactant, which can switch between a neutral or an ionic form depending on the pH of the medium, which thus becomes the driving force for the entire deposition process. Careful control of the experimental conditions has allowed us to selectively deposit CNTs on the inner surface of insulating silica capillaries by a simple, reproducible, and easily adaptable method.
Resumo:
The aim of this study was to evaluate the physical, chemical, and functional properties of recovered proteins of anchovy (Engraulis anchoita) and whitemouth croaker (Micropogonias furnieri) through the process of alkaline solubilisation and isoelectric precipitation, using different solubilisation (NaOH and KOH) and precipitation (HCl and H3PO4) reagents. The tests showed high protein level, and the lowest lipid reduction (94.5%) was found in the recovered protein of anchovy, the lowest yield of the process was 76.1%. The highest whiteness (78.8 and 74.2) was found in whitemouth croaker proteins. The solubilisation of the recovered protein was studied in the pH range (3, 5, 7, 9, and 11). The maximum solubility was at pHs 3 and 11 and minimum solubility was at pH 5 in the species under study.
Resumo:
In this paper we report a novel hydrogel functionalized optical Fiber Bragg Grating (FBG) sensor based on chemo-mechanical-optical sensing, and demonstrate its specific application in pH activated process monitoring. The sensing mechanism is based on the stress due to ion diffusion and polymer phase transition which produce strain in the FBG. This results in shift in the Bragg wavelength which is detected by an interrogator system. A simple dip coating method to coat a thin layer of hydrogel on the FBG has been established. The gel consists of sodium alginate and calcium chloride. Gel formation is observed in real-time by continuously monitoring the Bragg wavelength shift. We have demonstrated pH sensing in the range of pH of 2 to 10. Another interesting phenomenon is observed by swelling and deswelling of FBG functionalized with hydrogel by a sequence of alternate dipping between acidic and base solutions. It is observed that the Bragg wavelength undergoes reversible and repeatable pH dependent switching.
Resumo:
The oxalatecarbonate pathway involves the oxidation of calcium oxalate to low-magnesium calcite and represents a potential long-term terrestrial sink for atmospheric CO2. In this pathway, bacterial oxalate degradation is associated with a strong local alkalinization and subsequent carbonate precipitation. In order to test whether this process occurs in soil, the role of bacteria, fungi and calcium oxalate amendments was studied using microcosms. In a model system with sterile soil amended with laboratory cultures of oxalotrophic bacteria and fungi, the addition of calcium oxalate induced a distinct pH shift and led to the final precipitation of calcite. However, the simultaneous presence of bacteria and fungi was essential to drive this pH shift. Growth of both oxalotrophic bacteria and fungi was confirmed by qPCR on the frc (oxalotrophic bacteria) and 16S rRNA genes, and the quantification of ergosterol (active fungal biomass) respectively. The experiment was replicated in microcosms with non-sterilized soil. In this case, the bacterial and fungal contribution to oxalate degradation was evaluated by treatments with specific biocides (cycloheximide and bronopol). Results showed that the autochthonous microflora oxidized calcium oxalate and induced a significant soil alkalinization. Moreover, data confirmed the results from the model soil showing that bacteria are essentially responsible for the pH shift, but require the presence of fungi for their oxalotrophic activity. The combined results highlight that the interaction between bacteria and fungi is essential to drive metabolic processes in complex environments such as soil.
Resumo:
The influence of charge and aromatic stacking interactions on the self-assembly of a series of four model amyloid peptides has been examined. The four model peptides are based on the KLVFF motif from the amyloid Beta peptide, ABeta(16-20) extended at the N terminus with two Beta-alanine residues. We have studied NH2-BetaABetaAKLVFF-COOH (FF), NH2-BetaABetaAKLVFCOOH (F), CH3CONH-BetaABetaAKLVFF-CONH2 (CapF), and CH3CONH-BetaABetaAKLVFFCONH2 (CapFF). The former two are uncapped (net charge plus 2) and differ by one hydrophobic phenylalanine residue; the latter two are the analogous capped peptides (net charge plus 1). The self-assembly characteristics of these peptides are remarkably different and strongly dependent on concentration. NMR shows a shift from carboxylate to carboxylic acid forms upon increasing concentration. Saturation transfer measurements of solvent molecules indicate selective involvement of phenylalanine residues in driving the self-assembly process of CapFF due presumably to the effect of aromatic stacking interactions. FTIR spectroscopy reveals beta-sheet features for the two peptides containing two phenylalanine residues but not the single phenylalanine residue, pointing again to the driving force for self-assembly. Circular dichroism (CD) in dilute solution reveals the polyproline II conformation, except for F which is disordered. We discuss the relationship of this observation to the significant pH shift observed for this peptide when compared the calculated value. Atomic force microscopy and cryogenic-TEM reveals the formation of twisted fibrils for CapFF, as previously also observed for FF. The influence of salt on the self-assembly of the model beta-sheet forming capped peptide CapFF was investigated by FTIR. Cryo-TEM reveals that the extent of twisting decreases with increased salt concentration, leading to the formation of flat ribbon structures. These results highlight the important role of aggregation-induced pKa shifts in the self-assembly of model beta-sheet peptides.
Resumo:
This work proposes the design, the performance evaluation and a methodology for tuning the initial MFs parameters of output of a function based Takagi-Sugeno-Kang Fuzzy-PI controller to neutralize the pH in a stirred-tank reactor. The controller is designed to perform pH neutralization of industrial plants, mainly in units found in oil refineries where it is strongly required to mitigate uncertainties and nonlinearities. In addition, it adjusts the changes in pH regulating process, avoiding or reducing the need for retuning to maintain the desired performance. Based on the Hammerstein model, the system emulates a real plant that fits the changes in pH neutralization process of avoiding or reducing the need to retune. The controller performance is evaluated by overshoots, stabilization times, indices Integral of the Absolute Error (IAE) and Integral of the Absolute Value of the Error-weighted Time (ITAE), and using a metric developed by that takes into account both the error information and the control signal. The Fuzzy-PI controller is compared with PI and gain schedule PI controllers previously used in the testing plant, whose results can be found in the literature.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
BODIPY (4,4-Difluoro-3a,4a-diaza-s-indacene) dyes have gained lots of attention in application of fluorescence sensing and imaging in recent years because they possess many distinctive and desirable properties such as high extinction coefficient, narrow absorption and emission bands, high quantum yield and low photobleaching effect. However, most of BODIPY-based fluorescent probes have very poor solubilities in aqueous solution, emit less than 650 nm fluorescence that can cause cell and tissue photodamages compared with bio-desirable near infrared (650-900 nm) light. These undesirable properties extremely limit the applications of BODIPY-based fluorescent probes in sensing and imaging applications. In order to overcome these drawbacks, we have developed a very effective strategy to prepare a series of neutral highly water- soluble BODIPY dyes by enhancing the water solubilities of BODIPY dyes via incorporation of tri(ethylene glycol)methyl ether (TEG) and branched oligo(ethylene glycol)methyl ether (BEG) residues onto BODIPY dyes at 1,7-, 2,6-, 3,5-, 4- and meso- positions. We also have effectively tuned absorptions and emissions of BOIDPY dyes to red, deep red and near infrared regions via significant extension of π-conjugation of BODIPY dyes by condensation reactions of aromatic aldehydes with 2,6-diformyl BODIPY dyes at 1,3,5,7-positions. Based on the foundation that we built for enhancing water solubility and tuning wavelength, we have designed and developed a series of water-soluble, BODIPY-based fluorescent probes for sensitive and selective sensing and imaging of cyanide, Zn (II) ions, lysosomal pH and cancer cells. We have developed three BODIPY-based fluorescent probes for sensing of cyanide ions by incorporating indolium moieties onto the 6-position of TEG- or BEG-modified BOIDPY dyes. Two of them are highly water-soluble. These fluorescent probes showed selective and fast ratiometric fluorescent responses to cyanide ions with a dramatic fluorescence color change from red to green accompanying a significant increase in fluorescent intensity. The detection limit was measured as 0.5 mM of cyanide ions. We also have prepared three highly water-soluble fluorescent probes for sensing of Zn (II) ions by introducing dipicoylamine (DPA, Zn ion chelator) onto 2- and/or 6-positions of BEG-modified BODIPY dyes. These probes showed selective and sensitive responses to Zn (II) ion in the range from 0.5 mM to 24 mM in aqueous solution at pH 7.0. Particularly, one of the probes displayed ratiometric responses to Zn (II) ions with fluorescence quenching at 661 nm and fluorescence enhancement at 521 nm. This probe has been successfully applied to the detection of intracellular Zn (II) ions inside the living cells. Then, we have further developed three acidotropic, near infrared emissive BODIPY- based fluorescent probes for detection of lysosomal pH by incorporating piperazine moiety at 3,5-positions of TEG- or BEG-modified BODIPY dyes as parts of conjugation. The probes have low auto-fluorescence at physiological neutral condition while their fluorescence intensities will significant increase at 715 nm when pH shift to acidic condition. These three probes have been successfully applied to the in vitro imaging of lysosomes inside two types of living cells. At the end, we have synthesized one water- soluble, near infrared emissive cancer cell targetable BODIPY-based fluorescent polymer bearing cancer homing peptide (cRGD) residues for cancer cell imaging applications. This polymer exhibited excellent water-solubility, near infrared emission (712 nm), good biocompatibility. It also showed low nonspecific interactions to normal endothelial cells and can effectively detect breast tumor cells.
Resumo:
Candida albicans is the most common opportunistic fungal pathogen of humans. The balance between commensal and pathogenic C. albicans is maintained largely by phagocytes of the innate immune system. Analysis of transcriptional changes after macrophage phagocytosis indicates the C. albicans response is broadly similar to starvation, including up-regulation of alternate carbon metabolism. Systems known and suspected to be part of acetate/acetyl-CoA metabolism were also up-regulated, importantly the ACH and ACS genes, which manage acetate/acetyl-CoA interconversion, and the nine-member ATO gene family, thought to participate in transmembrane acetate transport and also linked to the process of environmental alkalinization. ^ Studies into the roles of Ach, Acs1 and Acs2 function in alternate carbon metabolism revealed a substantial role for Acs2 and lesser, but distinct roles, for Ach and Acs1. Deletion mutants were made in C. albicans and were phenotypically evaluated both in vitro and in vivo. Loss of Ach function resulted in mild growth defects on ethanol and acetate and no significant attenuation in virulence in a disseminated mouse model of infection. While loss of Acs1 did not produce any significant phenotypes, loss of Acs2 greatly impaired growth on multiple carbon sources, including glucose, ethanol and acetate. We also concluded that ACS1 and ACS2 likely comprise an essential gene pair. Expression analyses indicated that ACS2 is the predominant form under most growth conditions. ^ ATO gene function had been linked to the process of environmental alkalinization, an ammonium-mediated phenomenon described here first in C. albicans. During growth in glucose-poor, amino acid-rich conditions C. albicans can rapidly change its extracellular pH. This process was glucose-repressible and was accompanied by hyphal formation and changes in colony morphology. We showed that introduction of the ATO1G53D point mutant to C. albicans blocked alkalinization, as did over-expression of C. albicans ATO2, the only C. albicans ATO gene to lack the conserved N-terminal domain. A screen for alkalinization-deficient mutants revealed that ACH1 is essential for alkalinization. However, addition of acetate to the media restored alkalinization to the ach1 mutant. We proposed a model of ATO function in which Atos regulated the cellular co-export of ammonium and acetate. ^
Resumo:
The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO2-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH4Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na-free seawater indicate a potential role of Na/H plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited.
Resumo:
Pseudomonas maltophilia CSV89, a soil bacterium, produces an extracellular biosurfactant, ''Biosur-Pm''. The partially purified product is nondialyzable and chemically composed of 50% protein and 12-15% sugar, which indicates the complex nature of Biosur-Pm. It reduces the surface tension of water from 73 to 53 x 10(-3) N m(-1) and has a critical micellar concentration of 80 mg/l. Compared to aliphatic hydrocarbons, Biosur-Pm shows good activity against aromatic hydrocarbons. The emulsion formed is stable and does not require any metal ions for emulsification. The kinetics of Biosur-Pm production suggest that its synthesis isa growth-associated and pH-dependent process. At pH 7.0, cells produced more Biosur-Pm with less cell surface hydrophobicity. At pH 8.0, however, the cells produced less Biosur-Pm with more cell surface hydrophobicity and showed a twofold higher affinity for aromatic hydrocarbons compared to the cells grown at pH 7.0. The Biosur-Pm showed a pH-dependent release, stimulated growth of the producer strain on mineral salts medium with 1-naphthoic acid when added externally, and facilitated the conversion of salicylate to catechol. All these results suggest that Biosur-Pm is probably a cell-wall component and helps in hydrocarbon assimilation/uptake.
Resumo:
Viral capsids derived from an icosahedral plant virus widely used in physical and nanotechnological investigations were fully dissociated into dimers by a rapid change of pH. The process was probed in vitro at high spatiotemporal resolution by time-resolved small-angle X-ray scattering using a high brilliance synchrotron source. A powerful custom-made global fitting algorithm allowed us to reconstruct the most likely pathway parametrized by a set of stoichiometric coefficients and to determine the shape of two successive intermediates by ab initio calculations. None of these two unexpected intermediates was previously identified in self-assembly experiments, which suggests that the disassembly pathway is not a mirror image of the assembly pathway. These findings shed new light on the mechanisms and the reversibility of the assembly/disassembly of natural and synthetic virus-based systems. They also demonstrate that both the structure and dynamics of an increasing number of intermediate species become accessible to experiments.
Resumo:
Coagulation/flocculation process was applied in the polishing treatment of molasses wastewater on a bench-scale. Important operating variables, including coagulant type and dosage, solution pH, rapid mixing conditions as well as the type and dosage of polyeletrolytes were investigated based on the maximum removal efficiencies of chemical oxygen demand (COD) and color, residual turbidity and settling characteristics of flocs. HPSEC was utilized to evaluate the removal of molecular weight fractions of melanoidins-dominated organic compounds. Experimental results indicate that ferric chloride was the most effective among the conventional coagulants, achieving 89% COD and 98% color eliminations; while aluminum sulfate was the least effective, giving COD and color reductions of 66% and 86%, respectively. In addition to metal cations, counter-ions exert significant influence on the coagulation performance since Cl--based metal salts attained better removal efficiency than SO42--based ones at the optimal coagulant dosages. Coagulation of molasses effluent is a highly pH-dependent process, with better removal efficiency achieved at lower pH levels. Rapid mixing intensity, rather than rapid mixing time, has relatively strong influence on the settling characteristics of flocs formed. Lowering mixing intensity resulted in increasing settling rate but the accumulation of floating flocs. When used as coagulant aids, synthetic polyelectrolytes showed little effects on the improvement in organic removal. On the other hand, cationic polyacrylamide was observed to substantially enhance the settleability of flocs as compared to anionic polyacrylamide. The effects of rapid mixing conditions and polymer flocculants on the coagulation performance were discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Local Controller Networks (LCNs) provide nonlinear control by interpolating between a set of locally valid, subcontrollers covering the operating range of the plant. Constructing such networks typically requires knowledge of valid local models. This paper describes a new genetic learning approach to the construction of LCNs directly from the dynamic equations of the plant, or from modelling data. The advantage is that a priori knowledge about valid local models is not needed. In addition to allowing simultaneous optimisation of both the controller and validation function parameters, the approach aids transparency by ensuring that each local controller acts independently of the rest at its operating point. It thus is valuable for simultaneous design of the LCNs and identification of the operating regimes of an unknown plant. Application results from a highly nonlinear pH neutralisation process and its associated neural network representation are utilised to illustrate these issues.