986 resultados para pH sensitive
Resumo:
Background: The yellow fever mosquito, Aedes aegypti, is the primary vector for the viruses that cause yellow fever, mostly in tropical regions of Africa and in parts of South America, and human dengue, which infects 100 million people yearly in the tropics and subtropics. A better understanding of the structural biology of olfactory proteins may pave the way for the development of environmentally-friendly mosquito attractants and repellents, which may ultimately contribute to reduction of mosquito biting and disease transmission. Methodology: Previously, we isolated and cloned a major, female-enriched odorant-binding protein (OBP) from the yellow fever mosquito, AaegOBP1, which was later inadvertently renamed AaegOBP39. We prepared recombinant samples of AaegOBP1 by using an expression system that allows proper formation of disulfide bridges and generates functional OBPs, which are indistinguishable from native OBPs. We crystallized AaegOBP1 and determined its three-dimensional structure at 1.85 angstrom resolution by molecular replacement based on the structure of the malaria mosquito OBP, AgamOBP1, the only mosquito OBP structure known to date. Conclusion: The structure of AaegOBP1 (= AaegOBP39) shares the common fold of insect OBPs with six alpha-helices knitted by three disulfide bonds. A long molecule of polyethylene glycol (PEG) was built into the electron-density maps identified in a long tunnel formed by a crystallographic dimer of AaegOBP1. Circular dichroism analysis indicated that delipidated AaegOBP1 undergoes a pH-dependent conformational change, which may lead to release of odorant at low pH (as in the environment in the vicinity of odorant receptors). A C-terminal loop covers the binding cavity and this ""lid"" may be opened by disruption of an array of acid-labile hydrogen bonds thus explaining reduced or no binding affinity at low pH.
Resumo:
Nanoparticles with pH-sensitive behavior may enhance the success of chemotherapy in many cancers by efficient intracellular drug delivery. Here, we investigated the effect of a bioactive surfactant with pH-sensitive properties on the antitumor activity and intracellular behavior of methotrexate-loaded chitosan nanoparticles (MTX-CS-NPs). NPs were prepared using a modified ionotropic complexation process, in which was included the surfactant derived from Nα,Nε-dioctanoyl lysine with an inorganic lithium counterion. The pH-sensitive behavior of NPs allowed accelerated release of MTX in an acidic medium, as well as membrane-lytic pH-dependent activity, which facilitated the cytosolic delivery of endocytosed materials. Moreover, our results clearly proved that MTX-CSNPs were more active against the tumor HeLa and MCF-7 cell lines than the free drug. The feasibilty of using NPs to target acidic tumor extracellular pH was also shown, as cytotoxicity against cancer cells was greater in a mildly acidic environment. Finally, the combined physicochemical and pH-sensitive properties of NPs generally allowed the entrapped drug to induce greater cell cycle arrest and apoptotic effects. Therefore, our overall results suggest that pH-sensitive MTX-CS-NPs could be potentially useful as a carrier system for tumor and intracellular drug delivery in cancer therapy.
Resumo:
The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna. All surfactants yielded EC50 values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO2 headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as"readily biodegradable compounds".
Resumo:
The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna. All surfactants yielded EC50 values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO2 headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as"readily biodegradable compounds".
Resumo:
Surfactants are among the most versatile and widely used excipients in pharmaceuticals. This versatility, together with their pH-responsive membrane-disruptive activity and low toxicity, could also enable their potential application in drug delivery systems. Five anionic lysine-based surfactants which differ in the nature of their counterion were studied. Their capacity to disrupt the cell membrane was examined under a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model for endosomal membranes. The surfactants showed pH-sensitive hemolytic activity and improved kinetics at the endosomal pH range. Low concentrations resulted in negligible hemolysis at physiological pH and high membrane lytic activity at pH 5.4, which is in the range characteristic of late endosomes. With increasing concentration, the surfactants showed an enhanced capacity to lyse cell membranes, and also caused significant membrane disruption at physiological pH. This observation indicates that, at high concentrations, surfactant behavior is independent of pH. The mechanism of surfactant-mediated membrane destabilization was addressed, and scanning electron microscopy studies were also performed to evaluate the effects of the compounds on erythrocyte morphology as a function of pH. The in vitro cytotoxicity of the surfactants was assessed by MTT and NRU assays with the 3T3 cell line. The influence of different types of counterion on hemolytic activity and the potential applications of these surfactants in drug delivery are discussed. The possibility of using pH-sensitive surfactants for endosome disruption could hold great promise for intracellular drug delivery systems in future therapeutic applications.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of Nε- and Nα-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the α-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.
Resumo:
The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1(-)[VO(2)L1](-) and 2 [(VOL2)(2)(OMe)(2)] (where H(2)L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2"-yl)-H-1-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies, For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.
Resumo:
Cytochrome c exhibits two positively charged sites: site A containing lysine residues with high pK(a) values and site L containing ionizable groups with pK(aobs),values around 7.0. This protein feature implies that cytochrome c can participate in the fusion of mitochondria and have its detachment from the inner membrane regulated by cell acidosis and alkalosis. In this study, We demonstrated that both horse and tuna cytochrome c exhibited two types of binding to inner mitochondrial membranes that contributed to respiration: a high-affinity and low-efficiency pi-I-independent binding (microscopic dissociation constant K(sapp2), similar to 10 nM) and a low-affinity and high-efficiency pH-dependent binding that for horse cytochrome c had a pK(a) of similar to 6.7. For tuna cytochrome c (Lys22 and His33 replaced with Asn and Trp, respectively), the effect of pH on K(sapp1), was less striking than for the horse heme protein, and both tuna and horse cytochrome c had closed K(sapp1) values at pH 7.2 and 6.2, respectively. Recombinant mutated cytochrome c H26N and H33N also restored the respiration of the cytochrome c-depleted mitoplast in a pH-dependent manner. Consistently, the detachment of cytochrome c from nondepleted mitoplasts was favored by alkalinization, suggesting that site Lionization influences the participation of cytochrome c in the respiratory chain and apoptosis.
Resumo:
Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors. © 2007 The Authors.
Resumo:
We report results of an experimental study, complemented by detailed statistical analysis of the experimental data, on the development of a more effective control method of drug delivery using a pH sensitive acrylic polymer. New copolymers based on acrylic acid and fatty acid are constructed from dodecyl castor oil and a tercopolymer based on methyl methacrylate, acrylic acid and acryl amide were prepared using this new approach. Water swelling characteristics of fatty acid, acrylic acid copolymer and tercopolymer respectively in acid and alkali solutions have been studied by a step-change method. The antibiotic drug cephalosporin and paracetamol have also been incorporated into the polymer blend through dissolution with the release of the antibiotic drug being evaluated in bacterial stain media and buffer solution. Our results show that the rate of release of paracetamol getss affected by the pH factor and also by the nature of polymer blend. Our experimental data have later been statistically analyzed to quantify the precise nature of polymer decay rates on the pH density of the relevant polymer solvents. The time evolution of the polymer decay rates indicate a marked transition from a linear to a strictly non-linear regime depending on the whether the chosen sample is a general copolymer (linear) or a tercopolymer (non-linear). Non-linear data extrapolation techniques have been used to make probabilistic predictions about the variation in weight percentages of retained polymers at all future times, thereby quantifying the degree of efficacy of the new method of drug delivery.
Resumo:
The fabrication and characterization of a fibre optic pH sensor based on evanescent wave absorption is presented. The unclad portion of a multi-mode optical fibre is coated with a pH sensitive dye, which is immobilized by the sol–gel route. The sensitivity of the device has been found to increase when multiple sol–gel coatings are used as the sensing region. The dynamic range and the temporal response of the sensor are investigated for two different dyes, namely bromocresol purple and bromocresol green. The performance of the device is evaluated in terms of the results obtained during actual measurements.
Resumo:
The fabrication and characterization of a fibre optic pH sensor based on evanescent wave absorption is presented. The unclad portion of a multi-mode optical fibre is coated with a pH sensitive dye, which is immobilized by the sol–gel route. The sensitivity of the device has been found to increase when multiple sol–gel coatings are used as the sensing region. The dynamic range and the temporal response of the sensor are investigated for two different dyes, namely bromocresol purple and bromocresol green. The performance of the device is evaluated in terms of the results obtained during actual measurements
Resumo:
The fabrication and characterization of a fibre optic pH sensor based on evanescent wave absorption is presented. The unclad portion of a multi-mode optical fibre is coated with a pH sensitive dye, which is immobilized by the sol–gel route. The sensitivity of the device has been found to increase when multiple sol–gel coatings are used as the sensing region. The dynamic range and the temporal response of the sensor are investigated for two different dyes, namely bromocresol purple and bromocresol green. The performance of the device is evaluated in terms of the results obtained during actual measurements
Resumo:
The fabrication and characterization of a fibre optic pH sensor based on evanescent wave absorption is presented. The unclad portion of a multi-mode optical fibre is coated with a pH sensitive dye, which is immobilized by the sol–gel route. The sensitivity of the device has been found to increase when multiple sol–gel coatings are used as the sensing region. The dynamic range and the temporal response of the sensor are investigated for two different dyes, namely bromocresol purple and bromocresol green. The performance of the device is evaluated in terms of the results obtained during actual measurements.
Resumo:
The rheological properties of block co-polymers in water solution at different pH have been investigated. The block copolymers are based on different architectures containing poly(ethylene glycol), poly(propylene glycol) and different blocks of polymer that change their hydrophobic/hydrophilic behavior as a function of pH. The polymer chains of the starting material were extended at their functional ends with the pH-sensitive units using ATRP; this mechanism of controlled radical polymerization was chosen because of the need to minimize polydispersity and avoid transfer reactions possibly leading to homopolymeric inpurities. The starting material were modified in order to use them as macroinitiator for ATRP. The kinetic of each ATRP reaction has been investigated, in order to be able to synthesize polymers with different degree of polymerization, stopping the reaction when the desired polymers chain length has been reached. We will use polymer chains with different basicity and degree of polymerization to link any possible effect of their presence to the conditions under which they become hydrophobic. It has been shown that the rate of polymerization changes changing the type of macroinitiator and the type of monomer synthesized. The slowest rate of polymerization is the one with the most hindered monomer synthesized using the macroinitiator with the highest molecular weight. The water solubility of the synthesized polymers changes depending on the pH of the solution and on the structure of the polymers. It has been shown using 1H-NMR that some of the synthesized polymers are capable to self-aggregation in water solution. The self-aggregation and the type of aggregation is influenced from the structure of the polymer and from the pH of the solution. Changing the structure of the polymers and the pH it is possible to obtain different type of aggregates in solution. This aggregates differ for the volume occupied from them, and for their hardness. Rheological measurements have been demonstrated that the synthesized polymers are capable to form gel phases. The gelation temperature changes changing the structure of the aggregates in solution and it is possible to correlate the changing in the gelation temperature with the changing in the structure of the polymer.