976 resultados para ozone precursor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ozone (O3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42−). We examine changes in the tropospheric composition of O3, CH4, SO42− and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean ± 1 standard deviation) across multiple CTMs. We evaluate steady state O3 responses, including long-term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 ± 0.6 to 1.7 ± 2 mWm−2/Tg N yr−1), with some variation among models. Negative net RFs result from reductions in global CH4 (−162.6 ± 2 mWm−2 for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (−0.4 ± 0.2 to −0.7 ± 0.2 mWm−2/Tg C yr−1) and CO emissions (−0.13 ± 0.02 to −0.15 ± 0.02 mWm−2/Tg CO yr−1). Including the effect of O3 on CO2 uptake by vegetation likely makes these net RFs more negative by −1.9 to −5.2 mWm−2/Tg N yr−1, −0.2 to −0.7 mWm−2/Tg C yr−1, and −0.02 to −0.05 mWm−2/Tg CO yr−1. Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42−, regionally to hemispherically by O3, and globally by CH4. Global annual average SO42− responses to oxidant changes range from 0.4 ± 2.6 to −1.9 ± 1.3 Gg for NOx reductions, 0.1 ± 1.2 to −0.9 ± 0.8 Gg for NMVOC reductions, and −0.09 ± 0.5 to −0.9 ± 0.8 Gg for CO reductions, suggesting additional research is needed. The 100-year global warming potentials (GWP100) are calculated for the global CH4 reduction (20.9 ± 3.7 without stratospheric O3 or water vapor, 24.2 ± 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (−18.7 ± 25.9 to −1.9 ± 8.7 for NOx, 4.8 ± 1.7 to 8.3 ± 1.9 for NMVOC, and 1.5 ± 0.4 to 1.7 ± 0.5 for CO). Variation in GWP100 for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion of O3 precursors in future policies that address air quality and climate change simultaneously. Both global net RF and GWP100 are more sensitive to NOx and NMVOC reductions from South Asia than the other three regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-model ensembles are frequently used to assess understanding of the response of ozone and methane lifetime to changes in emissions of ozone precursors such as NOx, VOCs (volatile organic compounds) and CO. When these ozone changes are used to calculate radiative forcing (RF) (and climate metrics such as the global warming potential (GWP) and global temperature-change potential (GTP)) there is a methodological choice, determined partly by the available computing resources, as to whether the mean ozone (and methane) concentration changes are input to the radiation code, or whether each model's ozone and methane changes are used as input, with the average RF computed from the individual model RFs. We use data from the Task Force on Hemispheric Transport of Air Pollution source–receptor global chemical transport model ensemble to assess the impact of this choice for emission changes in four regions (East Asia, Europe, North America and South Asia). We conclude that using the multi-model mean ozone and methane responses is accurate for calculating the mean RF, with differences up to 0.6% for CO, 0.7% for VOCs and 2% for NOx. Differences of up to 60% for NOx 7% for VOCs and 3% for CO are introduced into the 20 year GWP. The differences for the 20 year GTP are smaller than for the GWP for NOx, and similar for the other species. However, estimates of the standard deviation calculated from the ensemble-mean input fields (where the standard deviation at each point on the model grid is added to or subtracted from the mean field) are almost always substantially larger in RF, GWP and GTP metrics than the true standard deviation, and can be larger than the model range for short-lived ozone RF, and for the 20 and 100 year GWP and 100 year GTP. The order of averaging has most impact on the metrics for NOx, as the net values for these quantities is the residual of the sum of terms of opposing signs. For example, the standard deviation for the 20 year GWP is 2–3 times larger using the ensemble-mean fields than using the individual models to calculate the RF. The source of this effect is largely due to the construction of the input ozone fields, which overestimate the true ensemble spread. Hence, while the average of multi-model fields are normally appropriate for calculating mean RF, GWP and GTP, they are not a reliable method for calculating the uncertainty in these fields, and in general overestimate the uncertainty.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examine the effect of ozone damage to vegetation as caused by anthropogenic emissions of ozone precursor species and quantify it in terms of its impact on terrestrial carbon stores. A simple climate model is then used to assess the expected changes in global surface temperature from the resulting perturbations to atmospheric concentrations of carbon dioxide, methane, and ozone. The concept of global temperature change potential (GTP) metric, which relates the global average surface temperature change induced by the pulse emission of a species to that induced by a unit mass of carbon dioxide, is used to characterize the impact of changes in emissions of ozone precursors on surface temperature as a function of time. For NOx emissions, the longer-timescale methane perturbation is of the opposite sign to the perturbations in ozone and carbon dioxide, so NOx emissions are warming in the short term, but cooling in the long term. For volatile organic compound (VOC), CO, and methane emissions, all the terms are warming for an increase in emissions. The GTPs for the 20 year time horizon are strong functions of emission location, with a large component of the variability owing to the different vegetation responses on different continents. At this time horizon, the induced change in the carbon cycle is the largest single contributor to the GTP metric for NOx and VOC emissions. For NOx emissions, we estimate a GTP20 of −9 (cooling) to +24 (warming) depending on assumptions of the sensitivity of vegetation types to ozone damage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study, a three-dimensional Eulerian photochemical model was employed to estimate the impact that organic compounds have on tropospheric ozone formation in the Metropolitan Area of Sao Paulo (MASP). In the year 2000, base case simulations were conducted in two periods: August 22-24 and March 13-15. Based on the pollutant concentrations calculated by the model, the correlation coefficient relative to observations for ozone ranged from 0.91 to 0.93 in both periods. In the simulations employed to evaluate the ozone potential of individual VOCs, as well as the sensitivity of ozone to the VOC/NO(x) emission ratio, the variation in anthropogenic emissions was estimated at 15% (according to tests performed previously variations of 15% were stable). Although there were significant differences between the two periods, ozone concentrations were found to be much more sensitive to VOCs than to NO(x) in both periods and throughout the study domain. In addition, considering their individual rates of emission from vehicles, the species/classes that were most important for ozone formation were as follows: aromatics with a kOH>2x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); ethene; and formaldehyde, which are the principal species related to the production, transport, storage and combustion of fossil fuels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O(3), NO, NO(2), CO, VOC, CO(2), and H(2)O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h(-1). Within the plume core, aerosol concentrations were strongly enhanced, with Delta CN/Delta CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. Delta CN/Delta CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 +/- 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The CO-normalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species. We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NO(x) and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NO(x)) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NO(x). The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the background rainforest atmosphere, and therefore NO(x) control is assumed to be the most effective ozone abatement strategy. Both observations and models show that the agglomeration of NO(x) emission sources, like power plants, in a well-arranged area can decrease the ozone production efficiency in the near field of the urban populated cores. But on the other hand remote areas downwind of the city then bear the brunt, being exposed to increased ozone production and N-deposition. The simulated maximum stomatal ozone uptake fluxes were 4 nmol m(-2) s(-1) close to Manaus, and decreased only to about 2 nmol m(-2) s(-1) within a travel distance >1500 km downwind from Manaus, clearly exceeding the critical threshold level for broadleaf trees. Likewise, the simulated N deposition close to Manaus was similar to 70 kg N ha(-1) a(-1) decreasing only to about 30 kg N ha(-1) a(-1) after three days of simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the surface O3 response over a “receptor” region to emission changes over a foreign “source” region is key to evaluating the potential gains from an international approach to abate ozone (O3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale “import sensitivity” as the ratio of the O3 response to the 20% reductions in foreign versus “domestic” (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O3 response to foreign emissions is largest in spring and late fall (0.7–0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8–1.6 ppb). High O3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8-h average O3 above 60 ppb to emission reductions in a foreign region (<10–20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O3 of about 0.1 ppb a−1, at the low end of the 0.1–0.5 ppb a−1 derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NOx, NMVOC, and CO emissions from the foreign source region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3) into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution. The results show that the net chemical processing (Δ O3chem) over the whole simulation is greater than net physical processing (Δ O3phys) in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport) or production (an upper tropospheric biomass burning case). However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases. Processing is quantified using a Lagrangian photochemical model with a novel method for simulating mixing through an ensemble of trajectories and a background profile that evolves with them. The model is able to simulate the magnitude and variability of the observations (of O3, CO, NOy and some hydrocarbons) and is consistent with the time-average OH following air-masses inferred from hydrocarbon measurements alone (by Arnold et al., 2007). Therefore, it is a useful new method to simulate air mass evolution and variability, and its sensitivity to process parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a 1-D process scale model used to investigate the chemical dynamics and temporal variability of nitrogen oxides (NOx) and ozone (O3) within and above snowpack at Summit, Greenland for March-May 2009 and estimates surface exchange of NOx between the snowpack and surface layer in April-May 2009. The model assumes the surface of snowflakes have a Liquid Like Layer (LLL) where aqueous chemistry occurs and interacts with the interstitial air of the snowpack. Model parameters and initialization are physically and chemically representative of snowpack at Summit, Greenland and model results are compared to measurements of NOx and O3 collected by our group at Summit, Greenland from 2008-2010. The model paired with measurements confirmed the main hypothesis in literature that photolysis of nitrate on the surface of snowflakes is responsible for nitrogen dioxide (NO2) production in the top ~50 cm of the snowpack at solar noon for March – May time periods in 2009. Nighttime peaks of NO2 in the snowpack for April and May were reproduced with aqueous formation of peroxynitric acid (HNO4) in the top ~50 cm of the snowpack with subsequent mass transfer to the gas phase, decomposition to form NO2 at nighttime, and transportation of the NO2 to depths of 2 meters. Modeled production of HNO4 was hindered in March 2009 due to the low production of its precursor, hydroperoxy radical, resulting in underestimation of nighttime NO2 in the snowpack for March 2009. The aqueous reaction of O3 with formic acid was the major sync of O3 in the snowpack for March-May, 2009. Nitrogen monoxide (NO) production in the top ~50 cm of the snowpack is related to the photolysis of NO2, which underrepresents NO in May of 2009. Modeled surface exchange of NOx in April and May are on the order of 1011 molecules m-2 s-1. Removal of measured downward fluxes of NO and NO2 in measured fluxes resulted in agreement between measured NOx fluxes and modeled surface exchange in April and an order of magnitude deviation in May. Modeled transport of NOx above the snowpack in May shows an order of magnitude increase of NOx fluxes in the first 50 cm of the snowpack and is attributed to the production of NO2 during the day from the thermal decomposition and photolysis of peroxynitric acid with minor contributions of NO from HONO photolysis in the early morning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most major cities in the eastern United States have air quality deemed unhealthy by the EPA under a set of regulations known as the National Ambient Air Quality Standards (NAAQS). The worst air quality in Maryland is measured in Edgewood, MD, a small community located along the Chesapeake Bay and generally downwind of Baltimore during hot, summertime days. Direct measurements and numerical simulations were used to investigate how meteorology and chemistry conspire to create adverse levels of photochemical smog especially at this coastal location. Ozone (O3) and oxidized reactive nitrogen (NOy), a family of ozone precursors, were measured over the Chesapeake Bay during a ten day experiment in July 2011 to better understand the formation of ozone over the Bay and its impact on coastal communities such as Edgewood. Ozone over the Bay during the afternoon was 10% to 20% higher than the closest upwind ground sites. A combination of complex boundary layer dynamics, deposition rates, and unaccounted marine emissions play an integral role in the regional maximum of ozone over the Bay. The CAMx regional air quality model was assessed and enhanced through comparison with data from NASA’s 2011 DISCOVER-AQ field campaign. Comparisons show a model overestimate of NOy by +86.2% and a model underestimate of formaldehyde (HCHO) by –28.3%. I present a revised model framework that better captures these observations and the response of ozone to reductions of precursor emissions. Incremental controls on electricity generating stations will produce greater benefits for surface ozone while additional controls on mobile sources may yield less benefit because cars emit less pollution than expected. Model results also indicate that as ozone concentrations improve with decreasing anthropogenic emissions, the photochemical lifetime of tropospheric ozone increases. The lifetime of ozone lengthens because the two primary gas-phase sinks for odd oxygen (Ox ≈ NO2 + O3) – attack by hydroperoxyl radicals (HO2) on ozone and formation of nitrate – weaken with decreasing pollutant emissions. This unintended consequence of air quality regulation causes pollutants to persist longer in the atmosphere, and indicates that pollutant transport between states and countries will likely play a greater role in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolism in an environment containing of 21% oxygen has a high risk of oxidative damage due to the formation of reactive oxygen species. Therefore, plants have evolved an antioxidant system consisting of metabolites and enzymes that either directly scavenge ROS or recycle the antioxidant metabolites. Ozone is a temporally dynamic molecule that is both naturally occurring as well as an environmental pollutant that is predicted to increase in concentration in the future as anthropogenic precursor emissions rise. It has been hypothesized that any elevation in ozone concentration will cause increased oxidative stress in plants and therefore enhanced subsequent antioxidant metabolism, but evidence for this response is variable. Along with increasing atmospheric ozone concentrations, atmospheric carbon dioxide concentration is also rising and is predicted to continue rising in the future. The effect of elevated carbon dioxide concentrations on antioxidant metabolism varies among different studies in the literature. Therefore, the question of how antioxidant metabolism will be affected in the most realistic future atmosphere, with increased carbon dioxide concentration and increased ozone concentration, has yet to be answered, and is the subject of my thesis research. First, in order to capture as much of the variability in the antioxidant system as possible, I developed a suite of high-throughput quantitative assays for a variety of antioxidant metabolites and enzymes. I optimized these assays for Glycine max (soybean), one of the most important food crops in the world. These assays provide accurate, rapid and high-throughput measures of both the general and specific antioxidant action of plant tissue extracts. Second, I investigated how growth at either elevated carbon dioxide concentration or chronic elevated ozone concentration altered antioxidant metabolism, and the ability of soybean to respond to an acute oxidative stress in a controlled environment study. I found that growth at chronic elevated ozone concentration increased the antioxidant capacity of leaves, but was unchanged or only slightly increased following an acute oxidative stress, suggesting that growth at chronic elevated ozone concentration primed the antioxidant system. Growth at high carbon dioxide concentration decreased the antioxidant capacity of leaves, increased the response of the existing antioxidant enzymes to an acute oxidative stress, but dampened and delayed the transcriptional response, suggesting an entirely different regulation of the antioxidant system. Third, I tested the findings from the controlled environment study in a field setting by investigating the response of the soybean antioxidant system to growth at elevated carbon dioxide concentration, chronic elevated ozone concentration and the combination of elevated carbon dioxide concentration and elevated ozone concentration. In this study, I confirmed that growth at elevated carbon dioxide concentration decreased specific components of antioxidant metabolism in the field. I also verified that increasing ozone concentration is highly correlated with increases in the metabolic and genomic components of antioxidant metabolism, regardless of carbon dioxide concentration environment, but that the response to increasing ozone concentration was dampened at elevated carbon dioxide concentration. In addition, I found evidence suggesting an up regulation of respiratory metabolism at higher ozone concentration, which would supply energy and carbon for detoxification and repair of cellular damage. These results consistently support the conclusion that growth at elevated carbon dioxide concentration decreases antioxidant metabolism while growth at elevated ozone concentration increases antioxidant metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 ± 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background, intensifies the conversion of HO2 to OH, increasing OH by a factor of 1.4. Comparisons between the global chemistry model CAM-Chem and observations show that consistent underestimates of HCHO by CAM-Chem throughout the troposphere result from underestimates in both NO and acetaldehyde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efforts presented by the scientific community in recent years towards the development of numerous green chemical processes and wastewater treatment technologies are presented and discussed. In the light of these approaches, environmentally friendly technologies, as well as the key role played by the well-known advanced oxidation processes, are discussed, giving special attention to the ones comprising ozone applications. Fundamentals and applied aspects dealing with ozone technology and its application are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ozone and inhalable particulate matter are the major air pollutants in the Metropolitan Area of São Paulo, Brazil, a region that has more than 19 million inhabitants and approximately 7 million registered vehicles. Proximity of roadways, adjacent land use, and local circulation are just some of the factors that can affect the results of monitoring of pollutant concentrations. The so-called weekend effect (higher ozone concentrations on weekends than on weekdays) might be related to the fact that concentrations of ozone precursors, such as nitrogen oxides (NOx) and Non Methane-Hydrocarbon (NMHC), are relatively lower on weekends. This phenomenon has been reported in some areas of the United States since the 1970s. The differences between the concentrations of ozone in period of weekend and weekday, were obtained from analysis of data hourly average of CETESB for 2004, studied the precursors to the formation of troposphere ozone, the meteorological variables and traffic profile for RMSP. Because of the proximity to sources of emissions from the station Pinheiros showed higher concentrations of NO and NO² and greater variations to the periods weekend and weekday. With fewer vehicles circulating during the weekend, and consequently less emission of pollutants, it has cleaner air and less concentration of NO and NO², there is the ideal setting to the formation of troposphere ozone, despite the lower concentration of NO². The proximity with the source emissions, aided by the increased availability of solar radiation and the presence of ozone precursors, were factors conditions for the occurrence of weekend effect.