996 resultados para oxygen sensor
Resumo:
A dissolved oxygen sensor made of plastic optical fiber as the substrate and dichlorotris (1, 10-phenanthroline) ruthenium as a fluorescence indicator is studied. Oxygen quenching characteristics of both intensity and phase were measured; the obtained characteristics showed deviation from the linear relation described by the Stern-Volmer equation. A two-layer model is proposed to explain the deviation, and main parameters can be deduced with the model. (C) 2009 Optical Society of America
Resumo:
The quenching of the electronically-excited, lumophoric state of [Ru(bpy)(3)(2+)(Ph4B-)(2)] by oxygen is studied in a wide variety of neat plasticizers. The Stern-Volmer constant, K-SV, is found to be inversely dependent upon the viscosity of the quenching medium, although the natural lifetime of the electronically excited state of [RU(bPY)(3)(2+)(Ph4B-)(2)] is largely independent of medium. The least viscous of the plasticizers tested, triethyl phosphate, did not, however, produce highly sensitive optical oxygen sensors when used to plasticize [RU(bPY)(3)(2+)(Ph4B-)(2)]-containing cellulose acetate butyrate (CAB) and poly(methyl methacrylate) (PMMA) films, Instead, the compatibility of the polymer-plasticizer combination, as measured by the difference in the values of the solubility parameter of the two, appears to be a major factor in determining the overall oxygen sensitivity of the thin plastic films. For highly compatible polymer-plasticizer combinations, the plasticizer with the lowest viscosity produces films of the highest oxygen sensitivity. This situation arises because in the film the quenching process is partly diffusion-controlled and, as a result, the quenching rate constant is inversely proportional to the effective viscosity of the reaction medium.
Resumo:
Performance data for a dye based, regenerable oxygen sensor (Mills and Lawrie [1], Mills et al. [2]) are analyzed to develop useful kinetic models for sensor photoactivation (dye reduction) and dark, oxygen detection (dye oxidation). The titania loaded, thin film sensor exhibits an apparent first order photoactivation of the dye, which we demonstrate (Section 3.2 and Fig. 4) is due to a kinetic disguise of a zero order photoreaction occurring through a non-uniformly illuminated sensor film. The observed zero order, slow recovery due to dye oxidation by dioxygen (O2 detection) appears best rationalized by a model assuming a near O2-impermeable skin developing on the sensor surface as solvent is evaporatively removed following sensor film casting and curing.
Resumo:
The microenvironment within the tumor plays a central role in cellular signaling. Rapidly proliferating cancer cells need building blocks for structures as well as nutrients and oxygen for energy production. In normal tissue, the vasculature effectively transports oxygen, nutrient and waste products, and maintains physiological pH. Within a tumor however, the vasculature is rarely sufficient for the needs of tumor cells. This causes the tumor to suffer from lack of oxygen (hypoxia) and nutrients as well as acidification, as the glycolytic end product lactate is accumulated. Cancer cells harbor mutations enabling survival in the rough microenvironment. One of the best characterized mutations is the inactivation of the von Hippel-Lindau protein (pVHL) in clear cell renal cell carcinoma (ccRCC). Inactivation causes constitutive activation of hypoxia-inducible factor HIF which is an important survival factor regulating glycolysis, neovascularization and apoptosis. HIFs are normally regulated by HIF prolyl hydroxylases (PHDs), which in the presence of oxygen target HIF α-subunit to ubiquitination by pVHL and degradation by proteasomes. In my thesis work, I studied the role of PHDs in the survival of carcinoma cells in hypoxia. My work revealed an essential role of PHD1 and PHD3 in cell cycle regulation through two cyclin-dependent kinase inhibitors (CKIs) p21 and p27. Depletion of PHD1 or PHD3 caused a cell cycle arrest and subjected the carcinoma cells to stress and impaired the survival.
Resumo:
Pulmonary neuroepithelial bodies (NEB) are widely distributed throughout the airway mucosa of human and animal lungs. Based on the observation that NEB cells have a candidate oxygen sensor enzyme complex (NADPH oxidase) and an oxygen-sensitive K+ current, it has been suggested that NEB may function as airway chemoreceptors. Here we report that mRNAs for both the hydrogen peroxide sensitive voltage gated potassium channel subunit (KH2O2) KV3.3a and membrane components of NADPH oxidase (gp91phox and p22phox) are coexpressed in the NEB cells of fetal rabbit and neonatal human lungs. Using a microfluorometry and dihydrorhodamine 123 as a probe to assess H2O2 generation, NEB cells exhibited oxidase activity under basal conditions. The oxidase in NEB cells was significantly stimulated by exposure to phorbol esther (0.1 μM) and inhibited by diphenyliodonium (5 μM). Studies using whole-cell voltage clamp showed that the K+ current of cultured fetal rabbit NEB cells exhibited inactivating properties similar to KV3.3a transcripts expressed in Xenopus oocyte model. Exposure of NEB cells to hydrogen peroxide (H2O2, the dismuted by-product of the oxidase) under normoxia resulted in an increase of the outward K+ current indicating that H2O2 could be the transmitter modulating the O2-sensitive K+ channel. Expressed mRNAs or orresponding protein products for the NADPH oxidase membrane cytochrome b as well as mRNA encoding KV3.3a were identified in small cell lung carcinoma cell lines. The studies presented here provide strong evidence for an oxidase-O2 sensitive potassium channel molecular complex operating as an O2 sensor in NEB cells, which function as chemoreceptors in airways and in NEB related tumors. Such a complex may represent an evolutionary conserved biochemical link for a membrane bound O2-signaling mechanism proposed for other cells and life forms.
Resumo:
The rat mitochondrial outer membrane-localized benzodiazepine receptor (MBR) was expressed in wild-type and TspO− (tryptophan-rich sensory protein) strains of the facultative photoheterotroph, Rhodobacter sphaeroides 2.4.1, and was shown to retain its structure within the bacterial outer membrane as assayed by its binding properties with a variety of MBR ligands. Functionally, it was able to substitute for TspO by negatively regulating the expression of photosynthesis genes in response to oxygen. This effect was reversed pharmacologically with the MBR ligand PK11195. These results suggest a close evolutionary and functional relationship between the bacterial TspO and the MBR. This relationship provides further support for the origin of the mammalian mitochondrion from a “photosynthetic” precursor. Finally, these findings provide novel insights into the physiological role that has been obscure for the MBR in situ.
Resumo:
The FixL proteins are biological oxygen sensors that restrict the expression of specific genes to hypoxic conditions. FixL’s oxygen-detecting domain is a heme binding region that controls the activity of an attached histidine kinase. The FixL switch is regulated by binding of oxygen and other strong-field ligands. In the absence of bound ligand, the heme domain permits kinase activity. In the presence of bound ligand, this domain turns off kinase activity. Comparison of the structures of two forms of the Bradyrhizobium japonicum FixL heme domain, one in the “on” state without bound ligand and one in the “off” state with bound cyanide, reveals a mechanism of regulation by a heme that is distinct from the classical hemoglobin models. The close structural resemblance of the FixL heme domain to the photoactive yellow protein confirms the existence of a PAS structural motif but reveals the presence of an alternative regulatory gateway.
Resumo:
The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N'-ethylene bis(salicylideneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at platinum electrode in acetonitrile/tetrabutylammonium perchlorate by cyclic voltammetry. The voltammetric behavior of the sensor was investigated in 0.5 mol L-1 KCl solution in the absence and presence of molecular oxygen. Thus, with the addition of oxygen to the solution, the increase of cathodic peak current (at -0.25 V vs. saturated calomel electrode (SCE)) of the modified electrode was observed. This result shows that the nickel-salen film on electrode surface promotes the reduction of oxygen. The reaction can be brought about electrochemically, where the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the molecular oxygen in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the oxygen reduction. A plot of the cathodic current vs. the dissolved oxygen concentration for chronoamperometry (fixed potential = -0.25 V vs. SCE) at the sensor was linear in the 3.95-9.20 mg L-1 concentration range and the concentration limit was 0.17 mg L-1 O-2. The proposed electrode is useful for the quality control and routine analysis of dissolved oxygen in commercial samples and environmental water. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with a commercial O-2 sensor. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N '-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. The voltammetric behavior of the modified electrode was investigated in 0.5 mol L-1 KCl solution in the absence and presende of molecular oxygen. A significant increased of cathodic peak current (at -0.20 vs. SCE) of the modified electrode with addition of oxygen to the solution was observed. This result shows that the nickel-salen film on the surface of the electrode promotes the reduction of oxygen. The reaction can be brought about electrochemically where in the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the oxygen molecular in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The plot of the cathodic current versus the dissolved oxygen concentration for chronoamperometry (potential fixed = -0.20 V) at the sensor was linear in the concentration range of 3.95 to 9.20 mg L-1 with concentration limit of 0.17 mg L-1 O-2. The modified electrode proposed is useful for the quality control and routine analysis of dissolved oxygen in commercial water and environmental water samples. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with an O-2 commercial sensor. (C) 2011 Published by Elsevier Ltd.