944 resultados para oxidizable carbon


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes) – BRAQ, pearl millet (Pennisetum glaucum) – MIL, jack bean (Canavalia ensiformis) – JB, blend (50 % each) of jack bean + millet (JB/MIL), and spontaneous vegetation (SPV). The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC) content, light fraction (LF), and the particulate organic C (POC), and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1) in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes a separation, recovery and reuse procedure of chemical residues with chromium. This residue was generated by the determination of oxidizable carbon in organic fertilizers samples. The Cr(VI) of the residue was reduced with ethanol and precipitated with NaOH. The Cr(OH)3 precipitate was separated and oxidized to dichromate ions with hydrogen peroxide. This solution was used another time in organic carbon determination. The uses of recycled dichromate solution were appropriated in four successive recycling. The accuracy was proven using potassium hydrogen phthalate and ten organic fertilizer samples. The organic carbon results, determined with recycled solutions, were similar the conventional solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present volume contains the planktological data collected during the expedition of the "Meteor" to the Indian Ocean in 1964/65. It was the main objective of the expedition to study the up- and downwelling conditioned along the western and eastern coasts of the Arabian Sea by the northeastern monsoon. It is from these areas that the greater part of the data here presented was obtained. A few values from the Red Sea have been added. As the title "Planktological-Chemical Data" implies, it was chiefly with the help of chemical methods that the planktological investigations, with the exception of the particle size analysis and phytoplankton counting conducted optically, were carried out. These investigations were above all devoted to a quantitative survey of particulate matter and plankton, the latter being sampled by water-bottle and net. The zooplankton hauls were taken with the Indian Ocean Standard Net according to the international guidelines laid down for the expedition. As a rule, double catches were made at every station, one sample being intended for laboratory analysis at the Indian Ocean Biological Centre in Ernakulam, South India, and the other for the Institut für Meereskunde in Kiel. In addition to determining the standing stock, the production rate of phytoplankton was measured by the 14C method. These experiments were mainly conducted during the latter half of the expedition. The planktological studies primarily covered the euphotic zone, extending into the underlying water layers up to a depth of 600 m. The investigations were above all directed towards ascertaining the quantity of organic substance, formed by primary production, in its relation to environmental conditions and determining whether or not organic substance is actively transported from the surface into the deeper layers by the periodically migration organisms of the deep scattering layers. Depending on the station time available, a few samples could now and then be taken from deeper layers. The present volume of planktological-chemical data addresses itself to all those concerned processing the extensive material collected during the International Indian Ocean Expedition. As a readily accessible work of reference, it hopes to serve as an aid in the evaluation and interpretation of the expedition results. The complementary ecological data such as temperature, salinity, and oxygen content as well as the figures obtained on abundance and distribution in depth of the nutrients essential for primary production may be found in the volume of physical-chemical data published in Series A of the "Meteor"-Forschungsergebnisse No. 2, 1966 (Dietrich et al., 1966).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phosphorus fertilization and irrigation increase coffee production, but little is known about the effect of these practices on soil organic matter and soil microbiota in the Cerrado. The objective of this study was to evaluate the microbiological and oxidizable organic carbon fractions of a dystrophic Red Latossol under coffee and split phosphorus (P) applications and different irrigation regimes. The experiment was arranged in a randomized block design in a 3 x 2 factorial design with three split P applications (P1: 300 kg ha-1 P2O5, recommended for the crop year, of which two thirds were applied in September and the third part in December; P2: 600 kg ha-1 P2O5, applied at planting and then every two years, and P3: 1,800 kg ha-1 P2O5, the requirement for six years, applied at once at planting), two irrigation regimes (rainfed and year-round irrigation), with three replications. The layers 0-5 and 5-10 cm were sampled to determine microbial biomass carbon (MBC), basal respiration (BR), enzyme activity of acid phosphatase, the oxidizable organic carbon fractions (F1, F2, F3, and F4), and total organic carbon (TOC). The irrigation regimes increased the levels of MBC, microbial activity and acid phosphatase, TOC and oxidizable fractions of soil organic matter under coffee. In general, the form of dividing P had little influence on the soil microbial properties and OC. Only P3 under irrigation increased the levels of MBC and acid phosphatase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface characteristics (area, chemical reactivity) play an important role in cell response to nanomaterials. The aim of this study was to evaluate the oxidative and inflammatory effects of multi−wall carbon nanotubes (MWCNT) uncoated (P0) or coated with carboxylic polyacid or polystyrene polybutadiene polymetacrylate of methyl polymers (P1 and P2 respectively) on murine macrophages (RAW 264.7 cell line). Carbon black nanoparticles (CB, diameter 95 nm) and crocidolite fibers (diameter: 80 nm, length: < 10 μm) were used as controls. Surface functional groups present on MWCNTs were analyzed by Knudsen flow reactor. The amount of acidic sites was P1> P0> P2, for basic sites was P0> P1>> P2 and for oxidizable sites was P0> P2> P1. In contact with cells, P2 formed smaller aggregates than P0 and P1, which were of similar size. Optical microscopy showed the formation of vacuoles after exposure only to P0, P1 and crocidolite. Incubation of cells with P0, P1 and crocidolite fibers induced a significant and similar decrease in metabolic activity, whereas P2 and CB had no effect. Cell number and membrane permeability were unmodified by incubation with the different particles. Incubation of macrophages with P0, P1 and crocidolite induced a dose− and time−dependent increase in mRNA expression of oxidative stress marker (HO−1, GPX1) and inflammatory mediators (TNF−a, MIP−2). No such responses were observed with P2 and CB. In conclusion, MWCNT coated with a carboxylic polyacid polymer exerted similar oxidative and inflammatory effects to uncoated MWCNT. By contrast, no such effects were observed with MWCNT coated with a polystyrene−based polymer. This kind of coating could be useful to decrease MWCNT toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information on the distribution and behavior of C fractions in soil particle sizes is crucial for understanding C dynamics in soil. At present little is known about the behavior of the C associated with silt-size particles. We quantified the concentrations, distribution, and enrichment of total C (TC), readily oxidizable C (ROC), hotwater- extractable C (HWC), and cold-water-extractable C (CWC) fractions in coarse (63–20-mm), medium (20–6.3-mm), and fine (6.3–2-mm) silt-size subfractions and in coarse (2000–250 mm) and fine (250–63 mm) sand and clay (<2-mm) soil fractions isolated from bulk soil (<2 mm), and 2- to 4-mm aggregate-size fraction of surface (0–25 cm) and subsurface (25–55 cm) soils under different land uses. All measured C fractions varied significantly across all soil particle-size fractions. The highest C concentrations were associated with the <20-mm soil fractions and peaked in the medium (20–6.3-mm) and fine (6.3–2-mm) silt subfractions in most treatments. Carbon enrichment ratios (ERC) revealed the dual behavior of the C fractions associated with the medium silt-size fraction, demonstrating the simultaneous enrichment of TC and ROC, and the depletion of HWC and CWC fractions. The medium silt (20–6.3-mm) subfraction was identified in this study as a zone where the associated C fractions exhibit transitory qualities. Our results show that investigating subfractions within the silt-size particle fraction provides better understanding of the behavior of C fractions in this soil fraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total organic carbon to total nitrogen ratio (C/N) and their isotopic composition (d13CTOC vs. d15NTN) are oft-applied proxies to discern terrigenous from marine sourced organics and to unravel the ancient environmental information. In high depositional Asian marginal seas, matrixes, including N-bearing minerals, dilution leads to illusive and even contradictive interpretations. We use KOH-KOBr to separate operationally defined total organic matter into oxidizable (labile) and residual fractions for content and isotope measurements. In a sediment core in the Okinawa Trough, significant amounts of carbon and nitrogen existed in the residual phase, in which the C/N ratio was ~9 resembling most documented sedimentary bulk C/N ratios in the China marginal seas. Such similarity creates a pseudo-C/N interrupting the application of bulk C/N. The residual carbon, though composition unknown, it displayed a d13C range (-22.7 to -18.9 per mil, mean -20.7 per mil) similar to black carbon (-24.0 to -22.8 per mil) in East China Sea surface sediments. After removing residual fraction, we found the temporal pattern of d13CLOC in labile fraction (LOC) was more variable but broadly agreed with the atmospheric pCO2-induced changes in marine endmember d13C. Thus, we suggested adding pCO2-induced endmember modulation into two-endmember mixing model for paleo-environment reconstruction. Meanwhile, the residual nitrogen revealed an intimate association with illite content suggesting its terrestrial origin. Additionally, d15N in residual fraction likely carried the climate imprint from land. Further studies are required to explore the controlling factors for carbon and nitrogen isotopic speciation and to retrieve the information locked in the residual fraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: The study of labile carbon fractions (LCF) provides an understanding of the behavior of soil organic matter (SOM) under different soil management systems and cover crops. The aim of this study was to assess the effect of different soil management systems with respect to tillage, cover crop and phosphate fertilization on the amount of the LCF of SOM. Treatments consisted of conventional tillage (CT) and no-tillage (NT) with millet as the cover crop and a no-tillage system with velvet bean at two phosphorus dosages. Soil samples were collected and analyzed for organic carbon (OC), C oxidizable by KMnO4 (C-KMnO4), particulate OC (POC), microbial biomass carbon and light SOM in the 0.0-0.05, 0.05-0.10 and 0.10-0.20 m soil layers. The Carbon Management Index (CMI) was calculated to evaluate the impacts of soil management treatments on the quality of the SOM. The different LCFs are sensitive to different soil management systems, and there are significant correlations between them. C-KMnO4 is considered the best indicator of OC carbon lability. In the soil surface layers, the CT reduced the carbon content in all of the labile fractions of the SOM. The use of phosphorus led to the accumulation of OC and carbon in the different soil fractions regardless of the tillage system or cover crop. The application of phosphate fertilizer improved the ability of the NTsystem to promote soil quality, as assessed by the CMI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes a novel, simple and reliable differential pulse voltammetric method for determining amitriptyline (AMT) in pharmaceutical formulations. It has been described for many authors that this antidepressant is electrochemically inactive at carbon electrodes. However, the procedure proposed herein consisted in electrochemically oxidizing AMT at an unmodified carbon nanotube paste electrode in the presence of 0.1 mol L(-1) sulfuric acid used as electrolyte. At such concentration, the acid facilitated the AMT electroxidation through one-electron transfer at 1.33 V vs. Ag/AgCl, as observed by the augmentation of peak current. Concerning optimized conditions (modulation time 5 ms, scan rate 90 mV s(-1), and pulse amplitude 120 mV) a linear calibration curve was constructed in the range of 0.0-30.0 μmol L(-1), with a correlation coefficient of 0.9991 and a limit of detection of 1.61 μmol L(-1). The procedure was successfully validated for intra- and inter-day precision and accuracy. Moreover, its feasibility was assessed through analysis of commercial pharmaceutical formulations and it has been compared to the UV-vis spectrophotometric method used as standard analytical technique recommended by the Brazilian Pharmacopoeia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report new silicon and germanium tubular nanostructures with no corresponding stable carbon analogues. The electronic and mechanical properties of these new tubes were investigated through ab initio methods. Our results show that these structures have lower energy than their corresponding nanoribbon structures and are stable up to high temperatures (500 and 1000 K, for silicon and germanium tubes, respectively). Both tubes are semiconducting with small indirect band gaps, which can be significantly altered by both compressive and tensile strains. Large bandgap variations of almost 50% were observed for strain rates as small as 3%, suggesting their possible applications in sensor devices. They also present high Young's modulus values (0.25 and 0.15 TPa, respectively). TEM images were simulated to help in the identification of these new structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caryocar brasiliense Camb (Pequi) is a typical Brazilian Cerrado fruit tree. Its fruit is used as a vitamin source for culinary purposes and as a source of oil for the manufacture of cosmetics. C. brasiliense supercritical CO2 extracts exhibit antimicrobial activity against the bacteria Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus and also possess antioxidant activity. This study was designed to evaluate the in vitro cytotoxicity and phototoxicity of the supercritical CO2 extract obtained from the leaves of this species. In vitro cytotoxicity and phototoxicity of C. brasiliense supercritical CO2 extracts were assessed using a tetrazolium-based colorimetric assay (XTT) and Neutral Red methods. We found that the C. brasiliense (Pequi) extract obtained by supercritical CO2 extraction did not present cytotoxic and phototoxic hazards. This finding suggests that the extract may be useful for the development of cosmetic and/or pharmaceutical products.