937 resultados para oxidative stress


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well-known that atherosclerosis occurs geographically at branch points where disturbed flow predisposes to the development of plaque via triggering of oxidative stress and inflammatory reactions. In this study, we found that disturbed flow activated anti-oxidative reactions via up-regulating heme oxygenase 1 (HO-1) in an X-box binding protein 1 (XBP1) and histone deacetylase 3 (HDAC3)-dependent manner. Disturbed flow concomitantly up-regulated the unspliced XBP1 (XBP1u) and HDAC3 in a vascular endothelial growth factor receptor (VEGFR) and PI3K/Akt dependent manner. The presence of XBP1 was essential for the up-regulation of HDAC3 protein. Over-expression of XBP1u and/or HDAC3 activated Akt1 phosphorylation, Nrf2 protein stabilization and nuclear translocation, and HO-1 expression. Knockdown of XBP1u decreased the basal level and disturbed flow-induced Akt1 phosphorylation, Nrf2 stabilization and HO-1 expression. Knockdown of HDAC3 ablated XBP1u-mediated effects. The mammalian target of rapamycin complex 2 (mTORC2) inhibitor, AZD2014, ablated XBP1u or HDAC3 or disturbed flow-mediated Akt1 phosphorylation, Nrf2 nuclear translocation and HO-1 expression. Neither actinomycin D nor cycloheximide affected disturbed flow-induced up-regulation of Nrf2 Protein. Knockdown of Nrf2 abolished XBP1u or HDAC3 or disturbed flow-induced HO-1 up-regulation. Co-immunoprecipitation assays demonstrated that XBP1u physically bound to HDAC3 and Akt1. The region of amino acids 201 to 323 of the HDAC3 protein was responsible for the binding to XBP1u. Double immunofluorescence staining revealed that the interactions between Akt1 and mTORC2, Akt1 and HDAC3, Akt1 and XBP1u, HDAC3 and XBP1u occurred in the cytosol. Thus, we demonstrate that XBP1u and HDAC3 exert a protective effect on disturbed flow-induced oxidative stress via up-regulation of mTORC2-dependent Akt1 phosphorylation and Nrf2-mediated HO-1 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischaemic strokes evoke blood-brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho-kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho-kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil- versus vehicle-treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post-ischaemia or 4 h post-ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress- and tight junction-related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen-glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin-5. Cotreatment of cells with Y-27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho-kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions. Inhibition of Rho-kinase (ROCK) activity in a mouse model of human ischaemic stroke significantly improved functional outcome while reducing cerebral lesion and oedema volumes compared to vehicle-treated counterparts. Studies conducted with brain microvascular endothelial cells exposed to OGD ± R in the presence of Y-27632 revealed restoration of intercellular junctions and suppression of prooxidant NADPH oxidase activity as important factors in ROCK inhibition-mediated BBB protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lycopene can exert antioxidant effects against peripheral and cellular oxidative stress and may be associated with reduced diabetic risk. Conversely, exercise-induced free radicals are thought to underpin many of the desirable whole-body adaptations following training and the use of antioxidants within the exercise model remains debatable. PURPOSE: To investigate the effect of lycopene supplementation on oxidative stress and glucose homeostasis following acute aerobic exercise. METHOD: Twenty-eight (n=28) apparently healthy male volunteers were recruited (age 24 ± 4 years; weight 78 ± 10 kg; height 178 ± 8 cm; 2max 40 ± 7 ml·kg-1 ·min-1 ) in a randomised, single blind, placebo-controlled study. Participants were required to attend the Laboratory on two occasions: prior to and following 6 weeks of supplementation of either 10mg lycopene (LG; n=15) or placebo (PG; n=13) followed by a bout of acute exercise for one hour at 65% 2max. Exogenous glucose oxidation was then measured on an isotope ratio mass spectrometer in a sub-group of participants (n=14) following exercise, by administration of a standard oral glucose tolerance test (OGTT; 75g glucose). Venous blood samples were drawn for measurement of oxidative stress parameters, plasma glucose and insulin. RESULTS: Plasma lycopene increased in LG only (0.01 ± 0.004 vs.0.02 ± 0.007 µmol/L; P <0.05) following supplementation and remained elevated post exercise compared to PG (0.01 ± 0.004 vs. 0.02 ± 0.009 µmol/L; P <0.05). There were no changes in other markers of oxidative stress (SOD, LOOHs, F2 ISP and Alkoxyl radical) either between or within the trials, (P >0.05, respectively). A main effect for an increase in insulin was observed two hours post OGTT in the sub-groups (Pooled data, P <0.05) but trends in the HOMA scores were evident with a 57% increase for LG (2.20 ± 1.84 vs. 5.14 ± 2.5; P >0.05) and an 11% decrease for PG (2.17 ± 1.06 vs. 1.94 ± 1.53; P >0.05). No change in plasma glucose was detected at any point, or after the OGTT (P >0.05). CONCLUSION: In healthy males, lycopene supplementation had no effect on post exercise levels of ROS or markers of lipid peroxidation, despite an increase in plasma lycopene. However, lycopene supplementation may affect post exercise insulin sensitivity in response to glucose consumption, but further parallel research is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research detailing the normal vascular adaptions to high altitude is minimal and often confounded by pathology (e.g. chronic mountain sickness) and methodological issues. We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged (∼2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders (Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation (FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2vs. 6.6 ± 0.3 m s−1P = 0.001). These changes persisted at days 12–14, and after allometrically scaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio (∼19%, P ≤ 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2 increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation evident during acute (n = 11, r = −0.53) and chronic (n = 7, r = −0.69; P ≤ 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n = 11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspired O2 fraction () = 0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7 ± 1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biochemical responses of Holcus lanatus L. to copper and arsenate exposure were investigated in arsenate-tolerant and -non-tolerant plants from uncontaminated and arsenic/copper-contaminated sites. Increases in lipid peroxidation, superoxide dismutase (SOD) activity and phytochelatin (PC) production were correlated with increasing copper and arsenate exposure. In addition, significant differences in biochemical responses were observed between arsenate-tolerant and -non-tolerant plants. Copper and arsenate exposure led to the production of reactive oxygen species, resulting in significant lipid peroxidation in non-tolerant plants. However, SOD activity was suppressed upon metal exposure, possibly due to interference with metallo-enzymes. It was concluded that in non-tolerant plants, rapid arsenate influx resulted in PC production, glutathione depletion and lipid peroxidation. This process would also occur in tolerant plants, but by decreasing the rate of influx, they were able to maintain their constitutive functions, detoxify the metals though PC production and quench reactive oxygen species by SOD activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese dout., Ciências e Tecnologias do Ambiente, Universidade do Algarve, 2007

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change scenarios comprise significant modifications of the marine realm, notably ocean acidification and temperature increase, both direct consequences of the rising atmospheric CO2 concentration. These changes are likely to impact marine organisms and ecosystems, namely the valuable seagrass-dominated coastal habitats. The main objective of this thesis was to evaluate the photosynthetic and antioxidant responses of seagrasses to climate change, considering CO2, temperature and light as key drivers of these processes. The methodologies used to determine global antioxidant capacity and antioxidant enzymatic activity in seagrasses were optimized for the species Cymodocea nodosa and Posidonia oceanica, revealing identical defence mechanisms to those found in terrestrial plants. The detailed analysis and identification of photosynthetic pigments in Halophila ovalis, H.stipulacea, Zostera noltii, Z marina, Z. capricorni, Cymodocea nodosa and Posidonia oceanica, sampled across different climatic zones and depths, also revealed a similarity with terrestrial plants, both in carotenoid composition and in the pigment-based photoprotection mechanisms. Cymodocea nodosa plants from Ria Formosa were submitted to the combined effect of potentially stressful light and temperature ranges and showed considerable physiological tolerance, due to the combination of changes in the antioxidant system, activation of the VAZ cycle and accumulation of leaf soluble sugars, thus preventing the onset of oxidative stress. Cymodocea nodosa plants living in a naturally acidified environment near submarine volcanic vents in Vulcano Island (Italy) showed to be under oxidative stress despite the enhancement of the antioxidant capacity, phenolics concentration and carotenoids. Posidonia oceanica leaves loaded with epiphytes showed a significant increase in oxidative stress, despite the increase of antioxidant responses and the allocation of energetic resources to these protection mechanisms. Globally, the results show that seagrasses are physiologically able to deal with potentially stressful conditions from different origins, being plastic enough to avoid stress in many situations and to actively promote ulterior defence and repair mechanisms when under effective oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcohol binge drinking, especially in teenagers and young adults is a major public health issue in the UK, with the number of alcohol related liver disorders steadily increasing. Understanding the mechanisms behind liver disease arising from binge-drinking and finding ways to prevent such damage are currently important areas of research. In the present investigation the effect of acute ethanol administration on hepatic oxidative damage and apoptosis was examined using both an in vivo and in vitro approach; the effect of micronutrient supplementation prior and during ethanol exposure was also studied. The following studies were performed: (1) ethanol administration (75 mmol/kg body weight) and cyanamide pre-treatment followed by ethanol to study elevated acetaldehyde levels with liver tissue analysed 2.5, 6 and 24 hours post-alcohol; (2). Using juvenile animals, 2% betaine supplementation followed by acute ethanol with tissue analysed 24 hrs post ethanol; and (3). Micronutrient supplementation during concomitant ethanol exposure to hepG2 cells. It was found that a single dose of alcohol caused oxidative damage to the liver of rats at 2.5 hr post-alcohol as evidenced by decreased glutathione levels and increased malondialdehyde levels in both the cytosol and mitochondria. Liver function was also depressed but there were no findings of apoptosis as cytochrome c levels and caspase 3 activity was unchanged. At 6 hours, the effect of ethanol was reduced suggesting some degree of recovery, however, by 24 hours, increased mitochondrial oxidative stress was apparent. The effect of elevated acetaldehyde on hepatic damage was particularly evident at 24 hours, with some oxidative changes at earlier time points. At 24 hours, acetaldehyde caused a profound drop in glutathione levels in the cytosol and hepatic function was still deteriorating. Studies examining ethanol exposure to juvenile livers showed that glutathione levels were increased, suggesting an overtly protective response not seen in with older animals. It also showed that despite cytochrome c release into the cytosol, caspase-3 levels were not increased. This suggests that ATP depletion is preventing apoptosis initiation. Betaine supplementation prevented almost all of the alcohol-mediated changes, suggesting that the main mechanism behind alcohol-mediated liver damage is oxidative stress. Results using the hepG2 cell line model showed that micronutrients involved in glutathione synthesis can protect against hepatocyte damage caused by alcohol metabolism, with reduced reactive oxygen species and increased/maintained glutathione levels. In summary, these results demonstrate that both acute alcohol and acetaldehyde can have damaging effects to the liver, but that dietary intervention may be able to protect against ethanol induced oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Erectile dysfunction (ED) is a prevalent complication of diabetes, and oxidative stress is an important feature of diabetic ED. Oxidative stress-induced damage plays a pivotal role in the development of tissue alterations. However, the deleterious effects of oxidative stress in the corpus cavernosum with the progression of diabetes remain unclear. The aim of this study was to evaluate systemic and penile oxidative stress status in the early and late stages of diabetes. Methods Male Wistar streptozotocin-diabetic rats (and age-matched controls) were examined 2 (early) and 8 weeks (late) after the induction of diabetes. Systemic oxidative stress was evaluated by urinary H2O2 and the ratio of circulating reduced/oxidized glutathione (GSH/GSSG). Penile oxidative status was assessed by H2O2 production and 3-nitrotyrosine (3-NT) formation. Cavernosal endothelial nitric oxide synthase (eNOS) was analyzed by quantitative immunohistochemistry. Dual immunofluorescence was also performed for 3-NT and α-smooth muscle actin (α-SMA) and eNOS–α-SMA. Results There was a significant increase in urinary H2O2 levels in both diabetic groups. The plasma GSH/GSSG ratio was significantly augmented in late diabetes. In cavernosal tissue, H2O2 production was significantly increased in late diabetes. Reactivity for 3-NT was located predominantly in cavernosal smooth muscle (SM) and was significantly reduced in late diabetes. Quantitative immunohistochemistry revealed a significant decrease in eNOS levels in cavernosal SM and endothelium in late diabetes. Conclusions The findings indicate that the noxious effects of oxidative stress are more prominent in late diabetes. Increased penile protein oxidative modifications and decreased eNOS expression may be responsible for structural and/or functional deregulation, contributing to the progression of diabetes-associated ED.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between metabolism and reactive oxygen species (ROS) production by the mitochondria has often been (wrongly) viewed as straightforward, with increased metabolism leading to higher generation of pro-oxidants. Insights into mitochondrial functioning show that oxygen consumption is principally coupled with either energy conversion as ATP or as heat, depending on whether the ATP-synthase or the mitochondrial uncoupling protein 1 (UCP1) is driving respiration. However, these two processes might greatly differ in terms of oxidative costs. We used a cold challenge to investigate the oxidative stress consequences of an increased metabolism achieved either by the activation of an uncoupled mechanism (i.e. UCP1 activity) in the brown adipose tissue (BAT) of wild-type mice or by ATP-dependent muscular shivering thermogenesis in mice deficient for UCP1. Although both mouse strains increased their metabolism by more than twofold when acclimatised for 4 weeks to moderate cold (12°C), only mice deficient for UCP1 suffered from elevated levels of oxidative stress. When exposed to cold, mice deficient for UCP1 showed an increase of 20.2% in plasmatic reactive oxygen metabolites, 81.8% in muscular oxidized glutathione and 47.1% in muscular protein carbonyls. In contrast, there was no evidence of elevated levels of oxidative stress in the plasma, muscles or BAT of wild-type mice exposed to cold despite a drastic increase in BAT activity. Our study demonstrates differing oxidative costs linked to the functioning of two highly metabolically active organs during thermogenesis, and advises careful consideration of mitochondrial functioning when investigating the links between metabolism and oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).