936 resultados para overall dynamic body acceleration (ODBA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

How animals manage time and expend energy has implications for survivorship. Being able to measure key metabolic costs of animals under natural conditions is therefore an important tool in behavioral ecology. One method for estimating activity-specific metabolic rate is via derived measures of acceleration, often 'overall dynamic body acceleration' (ODBA), recorded by an instrumented acceleration logger. ODBA has been shown to correlate well with rate of oxygen consumption (V ?o) in a range of species during activity in the laboratory. This study devised a method for attaching acceleration loggers to decapod crustaceans and then correlated ODBA against concurrent respirometry readings to assess accelerometry as a proxy for activity-specific energy expenditure in a model species, the American lobster Homarus americanus. Where the instrumented animals exhibited a sufficient range of activity levels, positive linear relationships were found between V ?o and ODBA over 20min periods at a range of ambient temperatures (6, 13 and 20°C). Mixed effect linear models based on these data and morphometrics provided reasonably strong predictive power for estimating activity-specific V ?o from ODBA. These V ?o-ODBA calibrations demonstrate the potential of accelerometry as an effective predictor of behavior-specific metabolic rate of crustaceans in the wild during periods of activity. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Maintaining a high and stable body temperature is often critical for female ectotherms during reproduction. Yet this strategy may be energetically costly, and therefore challenging, during this period of already high-energy demand. 2. Here, the 6-week deployment of tri-axial accelerometers (n = 6) on a marine ectotherm, the loggerhead turtle (Caretta caretta), reproducing at the northern limit of the species’ breeding range (i.e. in a thermally dynamic environment) revealed the behavioural mechanisms underlying its energy management strategy during the breeding season. 3. The estimated activity levels of female loggerheads using overall dynamic body acceleration (ODBA) were high during the breeding season, suggesting that marine turtles may not be able to remain inactive for long periods in the same manner as terrestrial ectotherms, because of the thermally dynamic nature of their environment. 4. However, activity levels were not constant throughout the season, being impacted by both ambient water temperature and female reproductive status. In cold water at the beginning of the nesting season, high levels of activity suggested that females behaviourally thermoregulated by seeking out warm water patches along the shoreline. Interactions with male turtles (courtship and/or avoidance) may also explain this high level of activity. As sea temperatures warmed up and the amount of energy devoted to reproduction probably increased, the turtles spent more time resting during long sequential flat-bottomed dives, and reduced any unnecessary locomotory activity. 5. Turtles may therefore adjust their activity patterns in response to seasonal variations in abiotic (i.e. ambient temperature) and biotic (i.e. reproductive status) factors. This may help minimize activity-linked metabolic rate and maximize reproductive output over a season while breeding in thermally dynamic environments. 6. A mechanistic model gave support to these empirical results. The model revealed that actively maintaining high and stable body temperature is of clear benefit to female turtles at temperate breeding sites. While energetically costly, such active thermoregulatory behaviour may speed up egg maturation, allowing turtles to initiate nesting earlier in the season, and hence maximize reproductive output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term ‘biologging’ refers to the use of miniaturized animal-attached tags for logging and/or relaying of data about an animal's movements, behaviour, physiology and/or environment. Biologging technology substantially extends our abilities to observe, and take measurements from, free-ranging, undisturbed subjects, providing much scope for advancing both basic and applied biological research. Here, we review highlights from the third international conference on biologging science, which was held in California, USA, from 1 to 5 September 2008. Over the last few years, considerable progress has been made with a range of recording technologies as well as with the management, visualization, integration and analysis of increasingly large and complex biologging datasets. Researchers use these techniques to study animal biology with an unprecedented level of detail and across the full range of ecological scales—from the split-second decision making of individuals to the long-term dynamics of populations, and even entire communities. We conclude our report by suggesting some directions for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting) and active (grooming, feeding and moving) behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA]) for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acceleration data loggers can be used to construct time-energy budgets or identify specific behaviours in free living animals. Within a marine context such devices have been largely deployed on vertebrates with comparatively little attention paid to commercially important invertebrates such as cephalopod molluscs. Here we tested the utility of tri-axial accelerometers to tease apart six discrete behaviours in the common cuttlefish Sepia officinalis. By considering depth profiles in conjunction with body pitch and roll and overall dynamic body acceleration we were able to make distinctions between resting at the seabed, active swimming, mating, post-coital panting and active manoeuvring along the seabed. © 2012 Marine Biological Association of the United Kingdom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flipper strokes have been proposed as proxies to estimate the energy expended by marine vertebrates while foraging at sea, but this has never been validated on free-ranging otariids (fur seals and sea lions). Our goal was to investigate how well flipper strokes correlate with energy expenditure in 33 foraging northern and Antarctic fur seals equipped with accelerometers, GPS, and time-depth recorders. We concomitantly measured field metabolic rates with the doubly-labelled water method and derived activity-specific energy expenditures using fine-scale time-activity budgets for each seal. Flipper strokes were detected while diving or surface transiting using dynamic acceleration. Despite some inter-species differences in flipper stroke dynamics or frequencies, both species of fur seals spent 3.79 ± 0.39 J/kg per stroke and had a cost of transport of ~1.6-1.9 J/kg/m while diving. Also, flipper stroke counts were good predictors of energy spent while diving (R(2) = 0.76) and to a lesser extent while transiting (R(2) = 0.63). However, flipper stroke count was a poor predictor overall of total energy spent during a full foraging trip (R(2) = 0.50). Amplitude of flipper strokes (i.e., acceleration amplitude × number of strokes) predicted total energy expenditure (R(2) = 0.63) better than flipper stroke counts, but was not as accurate as other acceleration-based proxies, i.e. Overall Dynamic Body Acceleration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the characteristics of the complex received signal in body area networks for two environments at the opposite ends of the multipath spectrum at 2.45 GHz. Important attributes of the complex channel such as the Gaussianity of the quadrature components and power imbalance, which form the basis of many popular fading models, are investigated. It is found that in anechoic environments the assumption of Gaussian distributed quadrature components will not always yield a satisfactory fit. Using a complex received signal model which considers a non-isotropic scattered signal contribution along with the presence of an optional dominant signal component, we use an autocorrelation function originally derived for mobile-to-mobile communications to model the temporal behavior of a range of dynamic body area network channels with considerable success. In reverberant environments, it was observed that the real part of the complex autocorrelation function for body area network channels decayed slightly quicker than that expected in traditional land mobile channels. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.

DESCRIPTION: This work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.

CONCLUSIONS: Framework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical and psychological decline is common in the post-treatment breast cancer population, yet the efficacy of concurrent interventions to meet both physical- psychosocial needs in this population has not been extensively examined. PURPOSE: This study explores the effects of a combined exercise and psychosocial intervention model on selected physiological-psychological parameters in post-treated breast cancer. METHODS: Forty-one breast cancer survivors were randomly assigned to one of four groups for an 8-week intervention: exercise only [EX, n=13] (aerobic and resistance training), psychosocial therapy only [PS, n=11] (biofeedback), combined EX and PS [EX+PS, n=11], or to control conditions [CO, n=6]. Mean delta score (post-intervention - baseline) were calculated for each of the following: body weight, % body fat (skin folds), predicted VO2max (Modified Bruce Protocol), overall dynamic muscular endurance [OME] (RMCRI protocol), static balance (Single leg stance test), dynamic balance (360° turn and 4-square step test), fatigue (Revised Piper Scale), and quality of life (FACT-B). A one-way ANOVA was used to analyze the preliminary results of this on-going randomized trial. RESULTS: Overall, there were significant differences in the delta scores for predicted VO2max, OME, and dynamic balance among the 4 groups (p<0.05). The EX+PS group showed a significant improvement in VO2max compared with the PS group (4.2 ± 3.8 vs. -0.9 ± 4.2 mL/kg/min; p<0.05). Both the EX+PS and EX groups showed significant improvements in OME compared with the PS and CO groups (44.5 ± 23.5 and 43.4 ± 22.1 vs. -3.9 ± 15.2 and 2.7 ± 13.7 repetitions; p<0.05). All 3 intervention groups showed significant improvements in dynamic balance compared with the CO group (-0.8 ± 0.6, -0.6 ± 0.8, and -0.6 ±1.0 vs. 0.6 ± 0.6 seconds; p<0.05). Overall, changes in fatigue tended towards significance among the 4 groups (p = 0.08), with decreased fatigue in the intervention groups and increased fatigue in the CO group. CONCLUSIONS: Our preliminary findings suggest that EX and PS seem to produce greater positive changes in the outcome measures than CO. However, at this point no definite conclusions can be made on the additive effects of combining the EX and PS interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semi-active truck damper was developed in conjunction with a commercial shock absorber manufacturer. A linearized damper model was developed for control system design purposes. Open- and closed-loop damper force tracking control was implemented, with tests showing that an open-loop approach gave the best compromise between response speed and accuracy. A hardware-in-the-loop test facility was used to investigate performance of the damper when combined with a simulated quarter-car model. The input to the vehicle model was a set of randomly generated road profiles, each profile traversed at an appropriate speed. Modified skyhook damping tests showed a simultaneous improvement over the optimum passive case of 13 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. Full-scale vehicle tests of the damper on a heavy tri-axle trailer were carried out. Implementation of modified skyhook damping yielded a simultaneous improvement over the optimum passive case of 8 per cent in vertical body acceleration and 8 per cent in dynamic tyre forces. © IMechE 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente elaborato ha per oggetto la tematica del Sé, in particolar modo il Sé corporeo. Il primo capitolo illustrerà la cornice teorica degli studi sul riconoscimento del Sé corporeo, affrontando come avviene l’elaborazione del proprio corpo e del proprio volto rispetto alle parti corporee delle altre persone. Il secondo capitolo descriverà uno studio su soggetti sani che indaga l’eccitabilità della corteccia motoria nei processi di riconoscimento sé/altro. I risultati mostrano un incremento dell’eccitabilità corticospinale dell’emisfero destro in seguito alla presentazione di stimoli propri (mano e cellulare), a 600 e 900 ms dopo la presentazione dello stimolo, fornendo informazioni sulla specializzazione emisferica substrati neurali e sulla temporalità dei processi che sottendono all’elaborazione del sé. Il terzo capitolo indagherà il contributo del movimento nel riconoscimento del Sé corporeo in soggetti sani ed in pazienti con lesione cerebrale destra. Le evidenze mostrano come i pazienti, che avevano perso la facilitazione nell’elaborare le parti del proprio corpo statiche, presentano tale facilitazione in seguito alla presentazione di parti del proprio corpo in movimento. Il quarto capitolo si occuperà dello sviluppo del sé corporeo in bambini con sviluppo atipico, affetti da autismo, con riferimento al riconoscimento di posture emotive proprie ed altrui. Questo studio mostra come alcuni processi legati al sé possono essere preservati anche in bambini affetti da autismo. Inoltre i dati mostrano che il riconoscimento del sé corporeo è modulato dalle emozioni espresse dalle posture corporee sia in bambini con sviluppo tipico che in bambini affetti da autismo. Il quinto capitolo sarà dedicato al ruolo dei gesti nel riconoscimento del corpo proprio ed altrui. I dati di questo studio evidenziano come il contenuto comunicativo dei gesti possa facilitare l’elaborazione di parti del corpo altrui. Nella discussione generale i risultati dei diversi studi verranno considerati all’interno della loro cornice teorica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the challenges for structural engineers during design is considering how the structure will respond to crowd-induced dynamic loading. It has been shown that human occupants of a structure do not simply add mass to the system when considering the overall dynamic response of the system, but interact with it and may induce changes of the dynamic properties from those of the empty structure. This study presents an investigation into the human-structure interaction based on several crowd characteristics and their effect on the dynamic properties of an empty structure. The dynamic properties including frequency, damping, and mode shapes were estimated for a single test structure by means of experimental modal analysis techniques. The same techniques were utilized to estimate the dynamic properties when the test structure was occupied by a crowd with different combinations of size, posture, and distribution. The goal of this study is to isolate the occupant characteristics in order to determine the significance of each to be considered when designing new structures to avoid crowd serviceability issues. The results are presented and summarized based on the level of influence of each characteristic. The posture that produces the most significant effects based on the scope of this research is standing with bent knees with a maximum decrease in frequency of the first mode of the empty structure by 32 percent atthe highest mass ratio. The associated damping also increased 36 times the damping of the empty structure. In addition to the analysis of the experimental data, finite element models and a two degree-of-freedom model were created. These models were used to gain an understanding of the test structure, model a crowd as an equivalent mass, and also to develop a single degree-of-freedom (SDOF) model to best represent a crowd of occupants based on the experimental results. The SDOF models created had an averagefrequency of 5.0 Hz, within the range presented in existing biomechanics research, and combined SDOF systems of the test structure and crowd were able to reproduce the frequency and damping ratios associated with experimental tests. Results of this study confirmed the existence of human-structure interaction andthe inability to simply model a crowd as only additional mass. The two degree-offreedom model determined was able to predict the change in natural frequency and damping ratio for a structure occupied by multiple group sizes in a single posture. These results and model are the preliminary steps in the development of an appropriate methodfor modeling a crowd in combination with a more complex FE model of the empty structure.