49 resultados para organocatalysts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cinchona alkaloids with a free 6'-OH functionality are being increasingly used within asymmetric organocatalysis. This fascinating class of bifunctional catalyst offers a genuine alternative to the more commonly used thiourea systems and because of the different spacing between the functional groups, can control enantioselectivity where other organocatalysts have failed. In the main, this review covers the highlights from the last five years and attempts to show the diversity of reactions that these systems can control. It is hoped that chemists developing asymmetric methodologies will see the value in adding these easily accessible, but underused organocatalysts to their screens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents the synthesis and evaluation of a series of C2-symmetric, diprolinamide based organocatalysts. These catalysts were designed to investigate the effect that catalyst bridge length imparted on activity and chiral selectivity through catalytic site cooperation. Evaluation of these compounds led to the postulation of a novel “chiral pocket” transition state that will aid in the design of future catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A concise synthesis of two imidazolium ion-tagged prolinamide organocatalysts 3 and 4, varying in anionic component (CF3COO- and PF6 -, respectively) is presented. The latter could be classified as an ionic liquid with a melting point of 66.3 °C, and glass transition temperature of 14.5 °C. The efficiency of each catalyst was compared via a direct aldol reaction revealing a large contrast in catalytic performance, with the catalyst bearing the PF6 - anion being superior. The optimal conditions were determined to be an on-water reaction system, and substrate scoping gave a range of desired aldol products in high conversion (up to >99 %), dr (up to 98:2), and er (up to 96:4). The application of these catalysts to beta-nitrostyrene conjugate addition is also presented. Graphical Abstract: [Figure not available: see fulltext.]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis and application of some ion-tagged catalysts in organometallic catalysis and organocatalysis. With the installation of an ionic group on the backbone of a known catalyst, two main effects are generally obtained. i) a modification of the solubility of the catalyst: if judicious choice of the ion pair is made, the ion-tag can confer to the catalyst a solubility profile suitable for catalyst recycling. ii) the ionic group can play a non-innocent role in the process considered: if stabilizing interaction between the ionic group and the developing charges in the transition state are established, the reaction can speed up. We describe the use of ion-tagged diphenylprolinol as Zn ligand. The chiral ligand grafted onto an ionic liquid (IL) was recycled 10 times with no loss of reactivity and selectivity, when it was employed in the first example of enantioselective addition of ZnEt2 to aldehydes in ILs. An ammonium-tagged phosphine displayed the capability to stabilize Pd catalysts for the Suzuki reaction in ILs. The ionic phase was recycled 6 times with no detectable loss of activity and very low Pd leaching in the organic phase. This catalytic system was also employed for the functionalization of the challenging substrate 5,11-dibromotetracene. In the field of organocatalysis, we prepared two ion-tagged derivatives of the McMillan imidazolidinone. The results of the asymmetric Diels-Alder reaction between trans-cinnamaldehyde and cyclopentadiene exhibited great dependence on the position and nature of the ionic group. Finally, when O-TMS-diphenylprolinol was tagged with an imidazolium ion, exploiting a silyl ether linker, an efficient catalyst for the asymmetric addition of aldehydes to nitroolefins was achieved. The catalyst displayed enhanced reactivity and the same high level of selectivity of the untagged parent catalyst and it could be employed in a wide range of reaction conditions, included use of water as solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimeric anthracenyldimethyl-derived Cinchona ammonium salts are used as chiral organocatalysts in 5 mol% for the phase-transfer enantioselective alkylation reaction of 2-alkoxycarbonyl-1-indanones with activated bromides. The corresponding adducts bearing a new all-carbon quaternary center are obtained usually in high yield and with moderate and opposite enantioselectivity (up to 55%) when using ammonium salts derived from quinidine and its pseudoenantiomer quinine as organocatalysts. These catalysts can be almost quantitatively recovered by precipitation in ether and reused.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica-gel supported binam-derived prolinamides are efficient organocatalysts for the direct intramolecular and intermolecular aldol reaction under solvent-free conditions using conventional magnetic stirring. These organocatalysts in combination with benzoic acid showed similar results to those obtained under similar homogeneous reaction conditions using an organocatalyst of related structure. For the intermolecular process, the aldol products were obtained at room temperature and using only 2 equiv of the ketone with high yields, regio-, diastereo- and enantioselectivities. Under these reaction conditions, also the cross aldol reaction between aldehydes is possible. The recovered catalyst can be reused up to nine times providing similar results. More interestingly, these heterogeneous organocatalysts can be used in the intramolecular aldol reaction allowing the synthesis of the Wieland–Miescher and ketone analogues with up to 92% ee, with its reused being possible up to five times without detrimental on the obtained results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wet unsupported and supported 1,1′-binaphthalene-2,2′-diamine (BINAM) derived prolinamides are efficient organocatalysts under solvent-free conditions at room temperature to perform the synthesis of chiral tacrine analogues in good yields (up to 93%) and excellent enantioselectivies (up to 96%). The Friedländer reaction involved in this process takes place with several cyclohexanone derivatives and 2-aminoaromatic aldehydes, and it is compatible with the presence of either electron-withdrawing or electron-donating groups at the aromatic ring of the 2-aminoaryl aldehyde derivatives used as electrophiles. The reaction can be extended to cyclopentanone derivatives, affording a regioisomeric but separable mixture of products. The use of the wet silica gel supported organocatalyst, under solvent-free conditions, for this process led to the expected product (up to 87% enantiomeric excess), with its reuse being possible at least up to five times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral primary amines containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a pyrimidin-2-yl unit are synthesized and used as general organocatalysts for the Michael reaction of α-branched aldehydes to maleimides. The reaction takes place with 10 mol% organocatalyst loading and hexanedioic acid as cocatalyst in aqueous N,N-dimethylformamide at 10 °C affording the corresponding succinimides in good yields and enantioselectivities. DFT calculations support the stereochemical results and the role played by the solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade, a great effort has been made by the chemical community to improve the efficiency of organic transformations and allow sustainable processes. Merging the use of supported and recyclable organocatalysts and aqueous conditions for the asymmetric synthesis of valuable molecules, has led to outstanding contributions in the area of green chemistry. Recent progresses in the field include the implementation of these methodologies in the large scale production of chiral molecules using automated flow chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent times, (thio)urea derivatives have become synonymous with hydrogen bonding owing to their extensive applicability as small molecule organocatalysts. In this paper, another activation mode by thiourea derivatives, namely via Lewis base catalysis, is disclosed for the NBS-mediated oxidation of alcohols. The mild reaction conditions employed here is suitable for chemoselective oxidation of secondary alcohol in the presence of primary alcohol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

手性胺是合成天然产物和手性药物的重要中间体,亚胺和烯胺的不对称催化还原是制备手性胺最直接有效的方式之一。手性有机小分子催化的亚胺不对称还原已取得了可喜的进展,但到目前为止,有机小分子催化的烯胺不对称还原,尤其是环状烯胺的不对称还原还少有报道。 本研究从手性叔丁基亚磺酰胺出发,设计并合成了一系列含有叔丁基亚磺酰基的新型脲类及硫脲类催化剂,并将其用于催化三氯硅烷对烯胺的不对称还原,尤其是1, 4-二氢吡啶酯类环状烯胺的不对称还原。通过对催化反应条件的优化,发现当添加1eq H2O时,反应收率和对映选择性明显提高,获得高达99% 的收率和88% ee,同时也取得了很好的非对映选择性(dr = 8:92)。首次实现了三氯硅烷对1, 4-二氢吡啶酯类环状烯胺的高立体选择性还原。 通过机理方面的研究,我们推测反应过程中可能是:首先,底物1, 4-二氢吡啶酯与催化剂形成氢键而被活化,当加入添加剂后,添加剂与三氯硅烷反应释放出一个质子,然后受活化的1, 4-二氢吡啶酯捕获该质子转变成更活泼的亚胺正离子的中间体。随后,在催化剂上的手性硫氧的活化下,三氯硅烷的负氢加成到受活化的亚胺正离子的中间体上,最后生成比较有利的反式产物1, 4, 5, 6-四氢吡啶乙酯。 Calalytic enantioselective reduction of imines and enamines represents one of the most straightforward and efficient methods for the preparation of chiral amines, which is an important class of intermediates for the synthesis of natural products and chiral drugs. Significant progresses have been made in organocatalytic enantioselective reduction of imines. However, asymmetric reduction of enamines, especially of cyclic enamines catalyzed by small organocatalysts has scarcely been reported. In this study, starting from chiral tert-butanesulfinamide, a series of structurally simple tert-butanesulfinyl urea and thiourea organocatalysts were developed and employed in asymmetric reduction of enamines by triclorosilane, particularly in the reduction of cyclic enamines such as Hantzsch 1, 4-dihydropyridines. During the optimization of reaction condictions, we found that the addition of one equivalent of H2O could significantly improve the yields and enatioselectivities. Under optimal condictions, 99% yield, up to 88% ee, and 8:92 diastereomeric ratio were obtained. Thus, we have for the first time realized the highly stereoselective reduction of Hantzsch 1, 4-dihydropyridines catalyzed by triclorosilane. As for the mechanism, we speculate that the Hantzsch 1, 4-dihydropyridine was firstly engaged with the catalyst through hydrogen bond. The proton released from the reaction of the additive and triclorosilane next added to one of the C=C bond to make an active iminium intermediate, which was then attacked by the nucleophlic hydrogen of HSiCl3 activated by the Lewis basic sulfinyl function of the catalyst to provide superior trans-1, 4, 5, 6-tetrahydropyridine products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

胺及其衍生物是很多重要生物活性分子的结构单元,是合成天然产物和手性药物的重要中间体。 直接还原胺化由于其合成步骤简单而成为制备二级胺和三级胺的简便方法。为了发展一种较为简便的直接还原胺化反应,我们把研究的重点放在开发一种简便实用的有机小分子催化方法上。由文献调研可知,现已报道的直接还原胺化方法大多是催化醛或酮与一级胺或者脂肪二级胺的直接还原胺化,而醛或酮与芳香二级胺的直接还原胺化却尚无报道。在本文中,我们发现用简单的四甲基乙二胺(TEMED)在室温下以二氯甲烷为溶剂即可催化三氯氢硅对酮和芳香二级胺之间的直接还原胺化反应,并取得了高达92%的收率。该反应条件温和,底物普适性广,各种类型的酮均可以与芳香二级胺进行直接还原胺化,并且得到比较满意的收率。 同时,我们从手性Sulfoximine出发,设计和合成了一系列的Sulfoximine类新衍生物,并将其应用于间接还原胺化反应中。遗憾的是我们并没有得到预期的不对称催化效果。 Amines and their derivatives are basic structural motifs in natural products and pharmaceuticals and highly versatile building blocks for various organic substrates. Direct reductive amination (DRA) is a convenient method for the preparation of secondary and tertiary amines owing to its operational simplicity. In an effort to develop a simple and convenient procedure for direct reductive amination reaction, we focused our study on search for a mild and efficient organocatalytic system. In the literature, there are many reports concerning DRA between aldehydes or ketones and either primary amines or secondary aliphatic amines. But there are no reports concerning DRA between aldehydes or ketones and secondary aromatic amines. In this study, we have developed a highly practical method for the synthesis of tertiary amines by the direct reductive amination of ketones and secondary aromatic amines with tetramethylethylenediamine (TEMED) as the catalyst using HSiCl3 as the reducing agent in dichloromethane (affording up to 92% yield). This method can be carried out under mild conditions and is compatible with many functional groups. A variety of ketones were efficiently aminated with secondary aromatic amines to afford the corresponding amines in good to excellent yields. Starting from chiral sulfoximine, we designed and synthesized a series of new sulfoximine derivatives and tested their efficiencies as asymmetric organocatalysts for the reduction of imines, which, unfortunately, only exhibited low catalytic activity and enantioselectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

手性胺是合成天然产物和手性药物的重要中间体,亚胺的不对称催化还原是制备光学活性手性胺的最直接有效的方法之一。但是,由于C=N双键的反应活性较弱以及容易发生E/Z异构等问题,亚胺的不对称催化还原具有很大的挑战性,既具有高对映选择性又具有宽广底物普适性的催化剂很少。 本文分别由手性脯氨酸、哌啶酸、哌嗪酸以及氨基醇出发,设计和合成了一系列结构新颖、合成简便、性能优良的酰胺类有机小分子路易斯碱催化剂,以廉价的三氯氢硅为氢源,用这些催化剂催化亚胺不对称还原,得到了非常优良的收率、对映选择性和前所未有的底物普适性。 文献研究认为,除N-甲酰基外,分子内含有芳香酰胺是能催化亚胺还原的有机小分子路易斯碱催化剂具有较高对映选择性的必要条件,我们研究发现N-甲酰脯氨酸非芳香酰胺类催化剂(包括结构简单的C2-对称型脯氨酰胺类催化剂),对N-芳基酮亚胺的还原可获得达86%的对映选择性,远高于同类芳香酰胺催化剂,证明N-甲酰非芳香酰胺类路易斯碱催化剂在亚胺还原中也能得到高的对映选择性。 在进一步研究中,我们以手性六元哌啶酸为模板,分别设计合成了N-甲酰哌啶酸芳香酰胺和N-甲酰哌啶酸非芳香酰胺两类催化剂,其中芳香酰胺催化剂(S)-N-(甲酰基)哌啶-2-酸-1-萘基酰胺(28)和非芳香酰胺催化剂(2S,1'S,2'S)-N-(甲酰基)-哌啶-2-酸(1',2'-二苯基-2'-乙酰氧基-乙基)酰胺(30)显示出非常优良的催化活性和对映选择性,对于N-芳基芳香酮亚胺的还原,无论是缺电子体系还是富电子体系,绝大部分都能得到很高的收率(达98%)和对映选择性(达96% ee)。特别值得一提的是30对一些脂肪族亚胺和α,β-不饱和亚胺的还原,虽然底物为E/Z混合物,也能得到很高的收率(达93%)和对映选择性(达95% ee),这样的底物普适性在过渡金属催化体系中也是前所未有的。 现有的催化亚胺还原的高对映选择性催化体系大多仅适用于甲基酮亚胺底物,对位阻较大的非甲基酮亚胺很难获得好的结果。我们以L-哌嗪酸为模板设计和合成出的(S)-N-(甲酰基)-哌嗪-2-酸-4-对叔丁基苯磺酰基-苯基酰胺不但对N-芳基甲基酮亚胺有很好的对映选择性(达90% ee),而且对于大位阻的N-芳基非甲基酮亚胺有更好的对映选择性(达97% ee)。该催化剂与30在底物普适性方面具有很好的互补性。 我们还设计了基于1,2-二苯基氨基醇为模板的新型N-甲酰路易斯碱有机小分子催化剂,首次发现结构简单的N-甲酰(1S,2R)二苯基氨基醇能较好的催化N-芳基酮亚胺,最高可以得到82%的对映选择性。 针对我们设计合成的结构新颖、性能优良的催化剂,我们对催化机理进行了探讨和解释,提出了几个假想的机理模型。 Catalytic enantioselective reduction of imines represents one of the most straightforward and efficient methods for the preparation of chiral amines, an important intermediate for the synthesis of natural products and chiral drugs. However, asymmetric reduction of imines remains a big challenge and highly enantioselective catalysts with a satisfactorily broad substrate scope remain elusive. Factors contributing to the difficulty of this transformation include the weak reactivity of the C=N bond and the existence of inseparable mixtures of E/Z isomers. Starting from chiral proline, pipecolinic acid, piperazine-2-carboxylic acid and 1,2-diphenyl amino alcohol, a series of structurally simple and easily prepared amides were developed as highly effective Lewis basic organocatalysts for the asymmetric reduction of imines with trichlorosilane as the reducing agent, which promoted the reduction of N-aryl imines with high yields and excellent enantioselectivities with an unprecedented substrate spectrum. In the literature, it has been believed that besides the N-formyl group, the existence of an arylamido group in the structure of Lewis basic organocatalysts is a prerequisite for obtaining high enantioselectivity in the catalytic reduction of imines. However, we found that the N-formyl-L-prolinamides bearing non-arylamido groups, including structurally simple C2-symmetric tetraamides, could also work as effective Lewis basic catalysts to promote the asymmetric reduction of ketimines with high enantioselectivities (up to 86% ee), which are even more enantioselective than the analogues with arylamido groups. In further studies, we developed novel N-formamides with arylamido groups and non-arylmido groups as Lewis basic catalysts using the commercially available L-pipecolinic acid as the template. The catalysts (S)-1-formyl-piperidine-2-carboxylic acid naphthylamide 28 and (2S,1'S,2'S)-acetic acid 2-[(1-formyl-piperidine-2-carbonyl) -amino]-1,2-diphenyl-ethyl ester 30 were found to promote the reduction of a broad range of N-aryl imines in high yields (up to 98%) and excellent ee values (up to 96%) under mild conditions. Furthermore, catalyst 30 also exhibited high enantioselectivities (up to 95% ee) for the challenging aliphatic ketimines and α,β-unsaturated imines despite that these imines exist as E/Z isomeric mixtures. The broad substrate spectrum of this catalyst is unprecedented in catalytic asymmetric imine reduction, including transition-metal-catalyzed hydrogenation processes. Many of the currently available highly enantioselective catalytic systems only tolerate methyl ketimines, which gave poor results for bulkier non-methyl ketimines. Starting from L-piperazine-2-carboxylic acid, we developed (S)-4-(4-tert- butylbenzenesulfonyl)-1-formyl-N-phenyl-piperazine-2-carboxamide as highly enantioselective Lewis basic catalysts for the hydrosilylation of both methyl ketimines and steric bulky non-methyl ketimines. Moreover, higher enantioselectivities were obtained for non-methyl ketimines than methyl ketimines under the catalysis of this catalyst. Thus, this catalyst system complements with 30 in terms of the substrate scope. We also found that easily accessible (1R,2S)-N-formyl-1,2-diphenyl- 2-aminoethanol worked as an effective Lewis basic catalyst in the enantioselective hydrosilylation of ketimines, affording high enantioselectivities (up to 82% ee) for a broad range of ketimines. To rationalize the high efficiencies of the structurally novel catalysts we developed, several catalytic models have been proposed.