959 resultados para organic electronic, organic photovoltaic, perylenediimide, timeresolved spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dieser Arbeit wird mithilfe verschiedener spektroskopischer Experimente, morphologischer Untersuchungen und elektrischer Charakterisierung die Eignung von Perylendiimiden als Akzeptoren in organischen Solarzellen untersucht. Ziel dieser Arbeit ist es die photophysikalischen Eigenschaften von Perylendiimid-Derivaten zu verstehen und durch geeignete Substitution zu verbessern. Das Verständnis soll helfen, neue Akzeptormaterialien für organische Solarzellen mit Hilfe eines zielgerichteten Designs zu entwickeln. Um Struktur-Morphologie-Eigenschafts-Beziehungen herzustellen, wurden zunächst kovalent verbundene Dyaden untersucht, die es ermöglichen, die photophysikalischen Prozesse bei gegebener Donator-Akzeptor Ordnung mit der Nanomorphologie zu korrelieren. Anschließend wurden die photophysikalischen Eigenschaften neuer ortho-substituierter Perylendiimid-Derivate und die Auswirkungen dieser Substitution im Festkörper charakterisiert. Diese neuartigen Perylendiimid-Derivate zeigten in Kombination mit einem Donatorpolymer in organischen Solarzellen eine Verdopplung der Effizienz gegenüber bereits bekannten Perylendiimiden. Die verbleibenden Verlustkanäle konnten weiterhin durch Untersuchung der in der Solarzelle stattfindenden Prozesse einzeln nachgewiesen werden, und es wurde ein indirekter Beweis erbracht, dass die Erzeugung freier Ladungsträger ein effizienzlimitierender Prozess in Perylendiimid-basierten Solarzellen ist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic solar cells based on bulk heterojunction between a conductive polymer and a carbon nanostructure offer potential advantages compared to conventional inorganic cells. Low cost, light weight, flexibility and high peak power per unit weight are all features that can be considered a reality for organic photovoltaics. Although polymer/carbon nanotubes solar cells have been proposed, only low power conversion efficiencies have been reached without addressing the mechanisms responsible for this poor performance. The purpose of this work is therefore to investigate the basic interaction between carbon nanotubes and poly(3-hexylthiophene) in order to demonstrate how this interaction affects the performance of photovoltaic devices. The outcomes of this study are the contributions made to the knowledge of the phenomena explaining the behaviour of electronic devices based on carbon nanotubes and poly(3-hexylthiophene). In this PhD, polymer thin films with the inclusion of uniformly distributed carbon nanotubes were deposited from solution and characterised. The bulk properties of the composites were studied with microscopy and spectroscopy techniques to provide evidence of higher degrees of polymer order when interacting with carbon nanotubes. Although bulk investigation techniques provided useful information about the interaction between the polymer and the nanotubes, clear evidence of the phenomena affecting the heterojunction formed between the two species was investigated at nanoscale. Identifying chirality-driven polymer assisted assembly on the carbon nanotube surface was one of the major achievements of this study. Moreover, the analysis of the electrical behaviour of the heterojunction between the polymer and the nanotube highlighted the charge transfer responsible for the low performance of photovoltaic devices. Polymer and carbon nanotube composite-based devices were fabricated and characterised in order to study their electronic properties. The carbon nanotube introduction in the polymer matrix evidenced a strong electrical conductivity enhancement but also a lower photoconductivity response. Moreover, the extension of pristine polymer device characterisation models to composites based devices evidenced the conduction mechanisms related to nanotubes. Finally, the introduction of carbon nanotubes in the polymer matrix was demonstrated to improve the pristine polymer solar cell performance and the spectral response even though the power conversion efficiency is still too low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum–classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs), experimentally observed for the first time twenty years ago, have triggered an unprecedented research effort, on the account of their astonishing structural, mechanical and electronic properties. Unfortunately, the current inability in predicting the CNTs’ properties and the difficulty in controlling their position on a substrate are often limiting factors for the application of this material in actual devices. This research aims at the creation of specific methodologies for controlled synthesis of CNTs, leading to effectively employ them in various fields of electronics, e.g. photovoltaics. Focused Ion Beam (FIB) patterning of Si surfaces is here proposed as a means for ordering the assembly of vertical-aligned CNTs. With this technique, substrates with specific nano-structured morphologies have been prepared, enabling a high degree of control over CNTs’ position and size. On these nano-structured substrates, the growth of CNTs has been realized by chemical vapor deposition (CVD), i.e. thermal decomposition of hydrocarbon gases over a heated catalyst. The most common materials used as catalysts in CVD are transition metals like Fe and Ni; however, their presence in the CNT products often results in shortcomings for electronic applications, especially for those based on silicon, being the metallic impurities incompatible with very-large-scale integration (VLSI) technology. In the present work the role of Ge dots as an alternative catalysts for CNTs synthesis on Si substrates has been thoroughly assessed, finding a close connection between the catalytic activity of such material and the CVD conditions, which can affect both size and morphology of the dots. Successful CNT growths from Ge dots have been obtained by CVD at temperatures ranging from 750 to 1000°C, with mixtures of acetylene and hydrogen in an argon carrier gas. The morphology of the Si surface is observed to play a crucial role for the outcome of the CNT synthesis: natural (i.e. chemical etching) and artificial (i.e. FIB patterning, nanoindentation) means of altering this morphology in a controlled way have been then explored to optimize the CNTs yield. All the knowledge acquired in this study has been finally applied to synthesize CNTs on transparent conductive electrodes (indium-tin oxide, ITO, coated glasses), for the creation of a new class of anodes for organic photovoltaics. An accurate procedure has been established which guarantees a controlled inclusion of CNTs on ITO films, preserving their optical and electrical properties. By using this set of conditions, a CNTenhanced electrode has been built, contributing to improve the power conversion efficiency of polymeric solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diketopyrrolopyrrole (DPP)-based organic semiconductors EH-DPP-TFP and EH-DPP-TFPV with branched ethyl-hexyl solubilizing alkyl chains and end capped with trifluoromethyl phenyl groups were designed and synthesized via Suzuki coupling. These compounds show intense absorptions up to 700 nm, and thin film-forming characteristics that sensitively depend on the solvent and coating conditions. Both materials have been used as electron donors in bulk heterojunction and bilayer organic photovoltaic (OPV) devices with fullerenes as acceptors and their performance has been studied in detail. The best power conversion efficiency of 3.3% under AM1.5G illumination (100 mW cm -2) was achieved for bilayer solar cells when EH-DPP-TFPV was used with C 60, after a thermal annealing step to induce dye aggregation and interdiffusion of C 60 with the donor material. To date, this is one of the highest efficiencies reported for simple bilayer OPV devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we report the molecular design, synthesis, characterization, and photovoltaic properties of a series of diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) based donor-acceptor random copolymers. The six random copolymers are obtained via Stille coupling polymerization using various concentration ratios of donor to acceptor in the conjugated backbone. Bis(trimethylstannyl)thiophene was used as the bridge block to link randomly with the two comonomers 5-(bromothien-2-yl)-2,5-dialkylpyrrolo[3,4-c]pyrrole-1, 4-dione and 2,6-dibromo-3,5-dipentadecyl-dithieno[3,2-b;2′,3′-d] thiophene. The optical properties of these copolymers clearly reveal a change in the absorption band through optimization of the donor-acceptor ratio in the backbone. Additionally, the solution processability of the copolymers is modified through the attachment of different bulky alkyl chains to the lactam N-atoms of the DPP moiety. Applications of the polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with PCBM as acceptor, show power conversion efficiencies (PCEs) of up to 5.02%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate characterization and reporting of organic photovoltaic (OPV) device performance remains one of the important challenges in the field. The large spread among the efficiencies of devices with the same structure reported by different groups is significantly caused by different procedures and equipment used during testing. The presented article addresses this issue by offering a new method of device testing using “suitcase sample” approach combined with outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the samples and the testing equipment were integrated in a compact suitcase that served both as a sample transportation tool and as a holder and test equipment during testing. In addition, an internet based coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among participants and provided a controlled reporting format for the results that eased the analysis of the data. The reported deviations among the laboratories were limited to 5% when compared to the Si reference device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows conducting outdoor measurements of OPV devices in a reproducible manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodes and the nature of their contact with organic materials play a crucial role in the realization of efficient optoelectronic components. Whether the injection (organic light-emitting diodes - OLEDs) or collection (organic photovoltaic cells - OPV cells) of carriers, contacts must be as efficient as possible. To do this, it is customary to refer to electrode surface treatment and/or using a buffer layer all things to optimize the contact. Efficiency of organic photovoltaic cells based on organic electron donor/organic electron acceptor junctions can be strongly improved when the transparent conductive anode is coated with a buffer layer (ABL). We show that an ultra-thin gold (0.5 nm) or a thin molybdenum oxide (3-5 nm) can be used as efficient ABL. However, the effects of these ABL depend on the highest occupied molecular orbital (HOMO) of different electron donors of the OPV cells. The results indicate that, in the case of metal ABL, a good matching between the work function of the anode and the highest occupied molecular orbital of the donor material is the major factor limiting the hole transfer efficiency. Indeed, gold is efficient as ABL only when the HOMO of the organic donor is close to its work function Phi(Au). MoO3 has a wider field of application as ABL than gold. The role of the oxide is not so clearly understood than that of Au, different models proposed to interpret the experimental results are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical transport behavior of organic photo-voltaic devices with nano-pillar transparent electrodes is investigated in this paper in order to understand possible enhancement of their charge-collection efficiency. Modeling and simulations of optical transport due to this architecture show an interesting regime of length-scale dependent optical characteristics. An electromagnetic wave propagation model is employed with simulation objectives toward understanding the mechanism of optical scattering and waveguide effects due to the nano-pillars and effective transmission through the active layer. Partial filling of gaps between the nano-pillars due to the nano-fabrication process is taken into consideration. Observations made in this paper will facilitate appropriate design rules for nano-pillar electrodes. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive interlayers consisting of zero valent iron and copper nanoparticles have been successfully incorporated into Surlyn films to fabricate moisture barrier materials with reduced water vapor permeabilities. The reactive nanoparticles dispersed in stearic acid were employed as the interlayers due to their ability to react with moisture. The water vapor transmission rates through the fabricated barrier films with reactive iron and copper interlayers decreased by over 4 orders of magnitude when compared to neat Surlyn. The flexibility and transparency of the barrier films have been evaluated by tensile and UV-visible experiments. Moreover, the accelerated aging studies conducted in accordance with the ISOS-III protocol confirmed the increased lifetimes of the organic photovoltaic (OPV) devices encapsulated with these reactive barrier films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dithiophene donor-acceptor copolymers that are bridged either with carbon (C-PCPDTBT) or silicon atoms (Si-PCPDTBT) belong to a promising family of materials for use in photoactive layers for organic photovoltaic cells (OPVs). In this work, we implement the non-destructive Spectroscopic Ellipsometry technique in the near infrared to the far ultraviolet spectral region in combination with advanced theoretical modeling to investigate the vertical distribution of the C-PCPDTBT and Si-PCPDTBT polymer and fullerene ([6,6]-phenyl C71-butyric acid methyl ester - PC70BM) phases in the blend, as well as the effect of the polymer-to-fullerene ratio on the distribution mechanism. It was found that the C-PCPDTBT:PC70BM blends have donor-enriched top regions and acceptor-enriched bottom regions, whereas the donor and acceptor phases are more homogeneously intermixed in the Si-PCPDTBT:PC70BM blends. We suggest that the chemical incompatibility of the two phases as expressed by the difference in their surface energy, may be a key element in promoting the segregation of the lower surface phase to the top region of the photoactive layer. We found that the increase of the photoactive layer thickness reduces the polymer enrichment at the cathode, producing a more homogeneous phase distribution of donor and acceptor in the bulk that leads to the increase of the OPV efficiency. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We fabricated the interdiffused organic photovoltaic devices, which composed of poly (2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene) (MEH-PPV) and buckminsterfullerene (C-60), by annealing treatment. After annealing, C60 diffused into the MEH-PPV layer, in consequence, MEH-PPV/C-60 interfacial area was increased and their interface became closer proximity. The results lead to reduce reverse-bias saturation current (J(s)), and increase the open-circuit voltage (V-OC) and the short-circuit current (J(SC)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexadecafluorophthalocyaninatocopper (F16CuPc)/zine phthalocyanine (ZnPc) heterojunction layer has been used as buffer layer in organic photovoltaic (OPV) cells based on ZnPc and C-60. The F16CuPc/ZnPc heterojunction with highly conductive property decreased the contact resistance between the indium-tin-oxide anode and the organic layer. As a result, the short-circuit current density and fill factor were increased, and the power-conversion efficiency was improved by over 60%. Therefore, the method provides an effective path to improve the performance of OPV cells.