995 resultados para oral pathogens
Resumo:
Cationic amphipathic α-helical peptides are intensively studied classes of host defence peptides (HDPs). Three peptides, peptide glycine-leucine-amide (PGLa-AM1), caerulein-precursor fragment (CPF-AM1) and magainin-AM1, originally isolated from norepinephrine-stimulated skin secretions of the African volcano frog Xenopus amieti (Pipidae), were studied for their antimicrobial and immunomodulatory activities against oral and respiratory pathogens. Minimal effective concentrations (MECs), determined by radial diffusion assay, were generally lower than minimal inhibitory concentrations (MICs) determined by microbroth dilution. PGLa-AM1 and CPF-AM1 were particularly active against Streptococcus mutans and all three peptides were effective against Fusobacterium nucleatum, whereas Enterococcus faecalis and Candida albicans proved to be relatively resistant micro-organisms. A type strain of Pseudomonas aeruginosa was shown to be more susceptible than the clinical isolate studied. PGLa-AM1 displayed the greatest propensity to bind lipopolysaccharide (LPS) from Escherichia coli, P. aeruginosa and Porphyromonas gingivalis. All three peptides showed less binding to P. gingivalis LPS than to LPS from the other species studied. Oral fibroblast viability was unaffected by 50. μM peptide treatments. Production of the pro-inflammatory cytokine IL-8 by oral fibroblasts was significantly increased following treatment with 1 or 10. μM magainin-AM1 but not following treatment with PGLa-AM1 or CPF-AM1. In conclusion, as well as possessing potent antimicrobial actions, the X. amieti peptides bound to LPS from three human pathogens and had no effect on oral fibroblast viability. CPF-AM1 and PGLa-AM1 show promise as templates for the design of novel analogues for the treatment of oral and dental diseases associated with bacteria or fungi.
Resumo:
Introduction: Human alpha defensins are a family of neutrophil-derived antimicrobial peptides also known as human neutrophil peptides (HNPs). The defensin family of peptides are characterised by six invariant cysteine residues forming three disulphide bridges. The formation of the correct disulphide pairs complicates the synthesis of full length human alpha defensin and limits its therapeutic potential as an antimicrobial peptide. Objectives: The aim of this study was to determine whether truncated alpha defensins displayed antimicrobial activity against a range of micro-organisms including oral pathogens. Methods: Engineered peptides were synthesised by solid-phase methods using standard Fmoc chemistry. Antibacterial assays were performed using a previously described ultra sensitive radial diffusion method. A total of five engineered defensin peptides and full length alpha defensin were tested for their sensitivity against eight micro-organisms, including Gram negative bacteria, Gram positive bacteria and fungal pathogens Results: Antimicrobial activity was identified as clear zones around peptide-containing wells. Zone diameters were used to calculate minimum inhibitory concentrations (MICs) for each peptide. There was considerable variability in the susceptibility of the micro-organisms to the truncated analogues. Bacillus subtilis and Enterococcus faecalis were sensitive to the majority of the engineered peptides whereas Staphylococcus aureus, Escherichia coli and Candida albicans displayed resistance (defined as an MIC of greater than 250 ug/ml) to the truncated defensins. Of the five engineered peptides synthesised, the 2-aminobenzoic acid (Abz)-containing analogues based on the C-terminal sequence of alpha defensin displayed MIC values closest to that of the full length defensin in 5 out of 8 micro-organisms studied. Conclusion: This study demonstrates that truncated alpha defensins display variable antimicrobial activity against a range of micro-organisms, including oral pathogens. The generation of truncated defensins without disulphide bridges simplifies their synthesis and increases their therapeutic potential.
Resumo:
Background: Epididymal protease inhibitor (eppin) is a dual motif protein belonging to the whey acidic protein (WAP) family. Although expressed in numerous different tissues, to date, its functional characterisation is limited. It has been shown to exhibit antibacterial activity against Gram-negative bacteria (Escherichia coli) and antiprotease activity against some proteases of the serine protease family. We are interested in determining the role of eppin in innate immune defence. Objectives: This study aims to determine eppin's potential function in the innate immune response in the oral cavity by investigating the antimicrobial activity of eppin against relevant oral pathogens. Methods: Eppin was recombinantly expressed in E. coli cells and purified by immobilised metal affinity chromatography (IMAC). The antimicrobial effects of the protein were then assessed against two oral pathogens, Fusobacterium nucleatum and Candida albicans, using a double layer radial diffusion assay. Results: Eppin displayed antimicrobial activities against both oral pathogens tested and these activities were shown to be comparable to the well characterised antimicrobial peptide, LL-37. The antifungal effects of eppin were shown to be more potent than those of the human cathelicidin, LL-37. Conclusions: Eppin has been shown to possess both antibacterial and antifungal properties against oral pathogens, suggesting an important role for this protein in the innate immune response in the oral cavity. This study furthers our knowledge of the physiological role exerted by eppin and its possible role in the modulation of chronic diseases such as periodontitis and oral candidiasis.
Resumo:
Gelatin microparticles containing propolis ethanolic extractive solution were prepared by spray-drying technique. Particle,, with regular morphology, mean diameter ranging of 2.27 mu m to 2.48 mu m, and good entrapment efficiency for propolis were obtained. The in vitro antimicrobial activity of microparticles was evaluated against microorganisms of oral importance (Enterococcus faecalis, Streptococcus salivarius, Streptococcus sanguinis, Streptococcus mitis, Streptococcus mutans, Streptococcus sobrinus, Candida albicans, and Lactobacillus casei). The utilized techniques were diffusion in agar and determination of minimum inhibitory concentration. The choice of the method to evaluate the antimicrobial activity of microparticles showed be very important. The microparticles displayed activity against all tested strains of similar way to the propolis, showing greater activity against the strains of E. salivarius, S. sanguinis, S. mitis, and C albicans.
Resumo:
The chemical composition of the essential oil isolated from the aerial parts of Melampodium divaricatum (Rich.) DC. (Asteraceae) was characterized by GC-FID and GC/MS analyses. (E)-Caryophyllene (56.0%), germacrene D (12.7%), and bicyclogermacrene (9.2%) were identified as the major oil components. The antimicrobial activity of the oil against seven standard strains of oral pathogens from the American Type Culture Collection (ATCC) was evaluated by determining minimum inhibitory concentrations (MICs) using the microdilution method. MIC Values below 100 mu g/ml were obtained against Streptococcus sobrinus (90 mu g/ml), Lactobacillus casei (30 mu g/ml), S. mutans (20 mu g/ml), and S. mitis (18 mu g/ml). In contrast, the MIC values of the major oil compound (E)-caryophyllene were higher than 400 mu g/ml against all pathogens, suggesting that the activity of the oil might depend on minor oil components and/or on synergistic effects. The M. divaricatum essential oil is a promising agent to include in anticariogenic oral rinse formulations for the control of oral pathogens.
Resumo:
Yogurt consumption has been related to longevity of some populations living on the Balkans. Yogurt starter L. delbrueckii subsp. bulgaricus and Str. thermophilus have been recognized as probiotics with verified beneficial health effects. The oral cavity emerges as a arget for probiotic applications. Probiotics have demonstrated promising results in controlling dental diseases and oral yeast infections. However, L. bulgaricus despite its broad availability in dairy products has not been evaluated for probiotic activity in the mouth. These series of studies investigated in vitro properties of L. bulgaricus to outline its potential as an oral probiotic. Prerequisite probiotic properties in the mouth are resistance to oral defense mechanisms, adherence to saliva-coated surfaces, and inhibition of oral pathogens. L. bulgaricus strains showed a strain-dependent inhibition of oral streptococci and Aggregatibacter actinomycetemcomitans, whereas none of the dairy starter strains could affect growth of Porphyromonas gingivalis and Fusobacterium nucleatum. Adhesion is a factor contributing to colonization of the species at the target site. Radiolabeled L. bulgaricus strains and L. rhamnosus GG were tested for their ability to adhere to saliva-coated surfaces. The effects of lysozyme on adhesion and adhesion of Streptococcus sanguinis after lactobacilli pretreatment were also assessed. Adhesion of L. bulgaricus remained lower in comparison to L. rhamnosus GG. One L. bulgaricus strain showed binding frequency comparable to S. sanguinis. Lysozyme pretreatment significantly increased Lactobacillus adhesion. Low gelatinolytic activity was observed for all strains and no conversion of proMMP-9 to its active form was induced by L. bulgaricus. Safety assessment ruled out deleterious effects of L. bulgaricus on extracellular matrix structures. Cytokine response of oral epithelial cells was assessed by measuring IL-8 and TNF-α in cell culture supernatants. The effect of P. gingivalis on cytokine secretion after lactobacilli pretreatment was also assessed. A strain- and time-dependent induction of IL-8 was observed with live bacteria inducing the highest levels of cytokine secretion. Levels of TNF-α were low and only one of ten L. bulgaricus strains stimulated TNF-α secretion similar to positive control. The addition of P. gingivalis produced immediate reduction of cytokine levels within the first hours of incubation irrespective of lactobacilli strains co-cultured with epithelial cells. According to these studies strains among the L. delbrueckii subsp. bulgaricus species may have beneficial probiotic properties in the mouth. Their potential in prevention and management of common oral infectious diseases needs to be further studied.
Resumo:
Epithelial cells in oral cavities can be considered reservoirs for a variety of bacterial species. A polymicrobial intracellular flora associated with periodontal disease has been demonstrated in buccal cells. Important aetiological agents of systemic and nosocomial infections have been detected in the microbiota of subgingival biofilm, especially in individuals with periodontal disease. However, non-oral pathogens internalized in oral epithelial cells and their relationship with periodontal status are poorly understood. The purpose of this study was to detect opportunistic species within buccal and gingival crevice epithelial cells collected from subjects with periodontitis or individuals with good periodontal health, and to associate their prevalence with periodontal clinical status. Quantitative detection of total bacteria and Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis in oral epithelial cells was determined by quantitative real-time PCR using universal and species-specific primer sets. Intracellular bacteria were visualized by confocal microscopy and fluorescence in situ hybridization. Overall, 33 % of cell samples from patients with periodontitis contained at least one opportunistic species, compared with 15 % of samples from healthy individuals. E. faecalis was the most prevalent species found in oral epithelial cells (detected in 20.6 % of patients with periodontitis, P = 0.03 versus healthy individuals) and was detected only in cells from patients with periodontitis. Quantitative real-time PCR showed that high levels of P. aeruginosa and S. aureus were present in both the periodontitis and healthy groups. However, the proportion of these species was significantly higher in epithelial cells of subjects with periodontitis compared with healthy individuals (P = 0.016 for P. aeruginosa and P = 0.047 for S. aureus). Although E. faecalis and P. aeruginosa were detected in 57 % and 50 % of patients, respectively, with probing depth and clinical attachment level ≥6 mm, no correlation was found with age, sex, bleeding on probing or the presence of supragingival biofilm. The prevalence of these pathogens in epithelial cells is correlated with the state of periodontal disease.
Resumo:
Antimicrobial peptides play an important role in host defence, particularly in the oral cavity where there is constant challenge by microorganisms. The a-defensin antimicrobial peptides comprise 30–50% of the total protein in the azurophilic granules of human neutrophils, the most abundant of which is human neutrophil peptide 1 (HNP-1). Despite its antimicrobial activity, a limiting factor in the potential therapeutic use of HNP-1 is its chemical synthesis with the correct disulphide topology. In the present study, we synthesised a range of truncated defensin analogues lacking disulphide bridges. All the analogues were modelled on the C-terminal region of HNP-1 and their antimicrobial activity was tested against a range of microorganisms, including oral pathogens. Although there was variability in the antimicrobial activity of the truncated analogues synthesised, a truncated peptide named 2Abz23S29 displayed a broad spectrum of antibacterial activity, effectively killing all the bacterial strains tested. The finding that truncated peptides, modelled on the C-terminal ß-hairpin region of HNP-1 but lacking disulphide bridges, display antimicrobial activity could aid their potential use in therapeutic interventions.
Resumo:
Introduction: Cationic, α- helical antimicrobial peptides found in skin secretions of the African Volcano Frog, Xenopus amieti include magainin-AM1, peptide glycine-leucine-amide (PGLa-AM1) and caerulein-precursor fragment (CPF-AM1). Objectives: The principle objective of this study was to determine the antibacterial activity of these peptides against a range of aerobic and anaerobic and oral pathogens. Secondary objectives were to establish their lipopolysaccharide (LPS) binding activity and determine potential cytotoxic effects against host cells. Methods: Magainin-AM1, PGLa-AM1 and CPF-AM1 were assessed for their antimicrobial activity against Fusobacteriim nucleatum, Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis and Streptococcus milleri using a double layer radial diffusion assay. The propensity for each peptide to bind LPS was determined using an indirect ELISA. The potential cytotoxicity of the peptides against human pulp cells in vitro was determined using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: Magainin-AM1, PGLa-AM1 and CPF-AM1 displayed potent antimicrobial activity against all the bacterial pathogens tested, with Magainin-AM1 being the least effective. PGLa-AM1 was most potent against S. mutans, with a minimum inhibitory concentration (MIC) of 1.2 μM. PGLa-AM1 and CPF-AM1 were both very active against F. nucleatum with MIC values of 1.5 μM and 2.2 μM respectively. The LPS binding ability of the peptides varied depending on the bacterial source of the LPS, with PGLa-AM-1 being the most effective at binding LPS. Cytotoxicity studies revealed all three peptides lacked cytotoxic effects at the concentrations tested. Conclusions: The peptides magainin-AM1, PGLa-AM1 and CPF-AM1 from the African Volcano Frog, Xenopus amieti displayed potent antimicrobial activity and LPS binding activity against a range of oral pathogens with little cytotoxic effects. These peptides merit further studies for the development of novel therapeutics to combat common oral bacterial infections.
Resumo:
The 16S rRNA genes from spirochaetes associated with digital dermatitis of British cattle were amplified by polymerase chain reaction from digital dermatitis lesion biopsies using one universal and one treponeme-specific primer. Two treponemal sequences were identified both of which shared a high degree of homology with the oral pathogen Treponema denticola (98%). Two further 16S rRNA gene sequences were obtained and shared similarity to Bacteroides levii (99%) and Mycoplasma hyopharyngis (98%). Polymerase chain reaction with T. denticola-specific primers amplified a potential virulence gene from digital dermatitis lesions which shared a high degree of homology to the 46-kDa haemolysin gene of T. denticola. The significance of the presence of organisms in digital dermatitis lesions of the bovine foot which are closely related to oral pathogens is discussed.
Resumo:
Oral pathogens, including periodontopathic bacteria, are thought to be aetiological factors in the development of cardiovascular disease. In this study, the presence of Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum-periodonticum-simiae group, Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Tannerella forsythia in atheromatous plaques from coronary arteries was determined by real-time PCR. Forty-four patients displaying cardiovascular disease were submitted to periodontal examination and endarterectomy of coronary arteries. Approximately 60-100 mg atherosclerotic tissue was removed surgically and DNA was obtained. Quantitative detection of periodontopathic bacteria was performed using universal and species-specific TaqMan probe/primer sets. Total bacterial and periodontopathic bacterial DNA were found in 94.9 and 92.3 %, respectively, of the atheromatous plaques from periodontitis patients, and in 80.0 and 20.0%, respectively, of atherosclerotic tissues from periodontally healthy subjects. All periodontal bacteria except for the F. nucleatum-periodonticum-simiae group were detected, and their DNA represented 47.3 % of the total bacterial DNA obtained from periodontitis; patients. Porphyromonas gingivalis, A. actinomycetemcomitans and Prevotella intermedia were detected most often. The presence of two or more periodontal species could be observed in 64.1 % of the samples. In addition, even in samples in which a single periodontal species was detected, additional unidentified microbial DNA could be observed. The significant number of periodontopathic bacterial DNA species in atherosclerotic tissue samples from patients with periodontitis suggests that the presence of these micro-organisms in coronary lesions is not coincidental and that they may in fact contribute to the development of vascular diseases.
Resumo:
Periodontal disease initiation and progression occurs as a consequence of the host immune inflammatory response to oral pathogens. The innate and acquired immune systems are critical for the proper immune response. LPS, an outer membrane constituent of periodontal pathogenic bacteria, stimulates the production of inflammatory cytokines IL-1 beta TNF alpha IL-6 and RANKL either directly or indirectly. In LPS-stimulated cells, the induction of cytokine expression requires activation of several signaling pathways including the p38 MAPK pathway. This review will discuss the significance of the p38 MAPK pathway in periodontal disease progression and the potential therapeutic consequences of pharmacological antagonism of this pathway in the treatment of periodontal diseases.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study aimed to evaluate the activity of essential oils (EOs) against Streptococcus mutans biofilm by chemically characterizing their fractions responsible for biological and antiproliferative activity. Twenty EO were obtained by hydrodistillation and submitted to the antimicrobial assay (minimum inhibitory (MIC) and bactericidal (MBC) concentrations) against S. mutans UA159. Thin-layer chromatography and gas chromatography/mass spectrometry were used for phytochemical analyses. EOs were selected according to predetermined criteria and fractionated using dry column; the resulting fractions were assessed by MIC and MBC, selected as active fractions, and evaluated against S. mutans biofilm. Biofilms formed were examined using scanning electron microscopy. Selected EOs and their selected active fractions were evaluated for their antiproliferative activity against keratinocytes and seven human tumor cell lines. MIC and MBC values obtained for EO and their active fractions showed strong antimicrobial activity. Chemical analyses mainly showed the presence of terpenes. The selected active fractions inhibited S. mutans biofilm formation (P < 0.05) did not affect glycolytic pH drop and were inactive against keratinocytes, normal cell line. In conclusion, EO showed activity at low concentrations, and their selected active fractions were also effective against biofilm formed by S. mutans and human tumor cell lines.
Resumo:
In this paper, cercariae, schistosomula, and adult Schistosoma mansoni worms were incubated in vitro with the essential oil of Piper cubeba (PC-EO) at concentrations from 12.5 to 200 mu g/mL, and the viability was evaluated using an inverted microscopy. The effects of PC-EO at 100 and 200 mu g/mL on the stages of S. mansoni were similar to those of the positive control (PZQ at 12.5 mu g/mL), with total absence of mobility after 120 h. However, at concentrations from 12.5 to 50 mu g/mL, PC-EO caused a reduction in the viability of cercariae and schistosomula when compared with the negative control groups (RPMI 1640 or dechlorinated water) or (RPMI 1640 + 0.1% DMSO or dechlorinated water + 0.1% DMSO). On the other hand, adult S. mansoni worms remained normally active when incubated with PC-EO at concentrations of 12.5 and 25 mu g/mL, and their viabilities were similar to those of the negative control groups. In addition, at concentrations ranging from 50 to 200 mu g/mL, separation of all the coupled adult worms was observed after 24 h of incubation, which is related to the fact of the reduction in egg production at this concentration. The main chemical constituents of PC-EO were identified by gas chromatography-mass spectrometry as being sabinene (19.99%), eucalyptol (11.87%), 4-terpineol (6.36%), beta-pinene (5.81%), camphor (5.61%), and delta-3-carene (5.34%). The cytotoxicity of the PC-EO was determined, and a significant cytotoxicity was only obtained in the concentration of 200 mu g/mL after 24 h treatment. The results suggest that PC-EO possesses an effect against cercariae, schistosomula, and adult worms of the S. mansoni.