972 resultados para oral immunization
Resumo:
Oral immunization is attractive as a delivery route because it is needle-free and useful for rapid mass vaccination programs to target pandemics or bioterrorism. This potential has not been realized for human vaccination, due to the requirement of large antigen doses and toxic (to humans) adjuvants to overcome the induction of oral tolerance and potential degradation of antigens in the stomach. To date, only oral vaccines based on live attenuated organisms have been approved for human use. In this study we describe the use of a lipid-based delivery system/adjuvant, Lipid C, for oral immunization to protect mice against genital tract chlamydial infection. Lipid C is formulated from food-grade purified and fractionated triglycerides. Bacterial shedding following vaginal challenge with Chlamydia muridarum was reduced by 50% in female mice orally immunized with the chlamydial major outer membrane protein (MOMP) formulated in Lipid C, protection equivalent to that seen in animals immunized with MOMP admixed with both cholera toxin (CT) and CpG oligodeoxynucleotides (CpG-ODN). Protection was further enhanced when MOMP, CT and CpG were all combined in the Lipid C matrix. Protection correlated with production of gamma interferon (IFN) by splenic T cells, a serum MOMP-specific IgG response and low but detectable levels of MOMP-specific IgA in vaginal lavage.
Resumo:
Human infections with EHEC such as O157:H7 have been a great concern for worldwide food-industry surveillance. This pathogen is commonly associated with bloody diarrhea that can evolve to the life-threatening hemolytic uremic syndrome. Animals are the natural reservoir where this pathogen remains asymptomatically, in steps of ingestion and colonization of the bowel. The bacterium is shed in the feces, contaminating the surroundings, including water and food that are directed for human consumption. A major player in this colonization process is intimin, an outer membrane adhesion molecule encoded by the E. coli attachment and effacement (eae) gene that has been shown to be essential for intimate bacterial attachment to eukaryotic host cells. In an attempt to reduce the colonization of animal reservoirs with EHEC O157:H7, we designed a vaccine model to induce an immune response against intimin gamma. The model is based on its recombinant expression in attenuated Salmonella, used as a suitable vaccine vector because of its recognized ability to deliver recombinant antigens and to elicit all forms of immunity: mucosal, systemic, and humoral responses. To test this model, mice were orally immunized with a S. enterica serovar Typhimurium strain carrying the pYA3137eaeA vector, and challenged with E. coli O157:H7. Here we show that immunization induced the production of high levels of specific IgG and IgA antibodies and promoted reduction in the fecal shedding of EHEC after challenge. The live recombinant vaccine reported herein may contribute to the efforts of reducing animal intestinal mucosa colonization.
Resumo:
Background/aims: Clinical and laboratory studies are consistent with a major role for cell-mediated immunity in recovery from oral infection with Candida albicans, but the role of humoral immunity remains controversial. The purpose of this study was to establish the relative contributions of cellular and humoral immunity to protection against oral candidiasis in a murine model, and to determine whether host responses could be enhanced by different immunization strategies. Results: Active oral immunization was protective in BALB/c and CBA/CaH mice, reducing both fungal burden and duration of infection after secondary challenge, whereas systemic immunization failed to protect against subsequent oral challenge. Candida-specific IgM was the predominant antibody detected in serum following both primary and secondary oral challenge; however, Candida-specific salivary IgA was not detectable. Immunization by passive transfer of either lymphocytes or immune serum did not confer any significant protection against oral infection in either susceptible or resistant mouse strain. Conclusion: The data demonstrate a possible role for mucosa-associated immunity following active immunization by the oral route, most likely exerted by local T lymphocytes resident in the oral mucosa, but there was no evidence to support a role for humoral immunity in protection against oral candidiasis.
Resumo:
The development of vaccines to combat pathogens that infect across mucosal surfaces has been a major goal of vaccine research. Successful mucosal vaccination requires the co-administration of adjuvants that can overcome the state of immune tolerance normally associated with mucosal application of proteins. In the case of oral immunization, delivery systems are also required to protect vaccine antigens against destruction by gastric pH and digestive enzymes. Furthermore, adjuvants used for mucosal delivery must be free of neurotoxic effects like those induced by the commonly used experimental mucosal adjuvant cholera toxin. Maintenance of the "cold chain" is also essential for the effectiveness of any vaccine and adjuvants/delivery systems that enhance the stability of a vaccine would offer a significant advantage. Needle-free methods of vaccination that induce protective immunity at multiple mucosal surfaces are also desirable for rapid vaccination of large populations. In the present study we show that transcutaneous immunization (TCI) using Lipid C, a novel lipid-based matrix originally developed for oral immunization, containing soluble Helicobacter sonicate significantly reduces the gastric bacterial burden in mice following gastric challenge with live Helicobacter pylori. Protection is associated with the production of splenic gamma interferon and gastric IgA and was achieved without the co-administration of potent and potentially toxic adjuvants, although protection was further enhanced by inclusion of CpG-ODN and cholera toxin in the lipid delivery system.
Resumo:
To specifically induce a mucosal antibody response to purified human papillomavirus type 16 (HPV16) virus-like particles (VLP), we immunized female BALB/c mice orally, intranasally, and/or parenterally and evaluated cholera toxin (CT) as a mucosal adjuvant. Anti-HPV16 VLP immunoglobulin G (IgG) and IgA titers in serum, saliva, and genital secretions were measured by enzyme-linked immunosorbent assay (ELISA). Systemic immunizations alone induced HPV16 VLP-specific IgG in serum and, to a lesser extent, in genital secretions but no secretory IgA. Oral immunization, even in the presence of CT, was inefficient. However, three nasal immunizations with 5 microgram of VLP given at weekly intervals to anesthetized mice induced high (>10(4)) and long-lasting (>15 weeks) titers of anti-HPV16 VLP antibodies in all samples, including IgA and IgG in saliva and genital secretions. CT enhanced the VLP-specific antibody response 10-fold in serum and to a lesser extent in saliva and genital secretions. Nasal immunization of conscious mice compared to anesthetized mice was inefficient and correlated with the absence of uptake of a marker into the lung. However, a 1-microgram VLP systemic priming followed by two 5-microgram VLP intranasal boosts in conscious mice induced both HPV16 VLP-specific IgG and IgA in secretions, although the titers were lower than in anesthetized mice given three intranasal immunizations. Antibodies in serum, saliva, and genital secretions of immunized mice were strongly neutralizing in vitro (50% neutralization with ELISA titers of 65 to 125). The mucosal and systemic/mucosal HPV16 VLP immunization protocols that induced significant titers of neutralizing IgG and secretory IgA in mucosal secretions in mice may be relevant to genital HPV VLP-based human vaccine trials.
Resumo:
Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.
Resumo:
Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Dhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+) T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.
Resumo:
Peste des petits ruminants (PPR) is an acute, highly contagious disease of small ruminants caused by a morbillivirus, Peste des petits ruminants virus (PPRV). The disease is prevalent in equatorial Africa, the Middle East, and the Indian subcontinent. A live attenuated vaccine is in use in some of the countries and has been shown to provide protection for at least three years against PPR. However, the live attenuated vaccine is not robust in terms of thermotolerance. As a step towards development of a heat stable subunit vaccine, we have expressed a hemagglutinin-neuraminidase (HN) protein of PPRV in peanut plants (Arachis hypogea) in a biologically active form, possessing neuraminidase activity. Importantly. HN protein expressed in peanut plants retained its immunodominant epitopes in their natural conformation. The immunogenicity of the plant derived HN protein was analyzed in sheep upon oral immunization. Virus neutralizing antibody responses were elicited upon oral immunization of sheep in the absence of any mucosal adjuvant. In addition, anti-PPRV-HN specific cell-mediated immune responses were also detected in mucosally immunized sheep. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Las infecciones respiratorias altas y bajas son una causa común de morbimortalidad infantil. Se ha propuesto el uso de los lisados bacterianos para prevenir las infecciones recurrentes sin embargo su uso aún se considera controversial. Metodología: Se realizó una revisión sistemática de la literatura. La búsqueda se realizó a través de las bases de datos PUBMED, Embase, Ovid, LiLaCS y Cochrane library plus. Se incluyeron metanálisis publicados en idiomas inglés y español, entre los años 1998 y 2012. Se realizó una evaluación de calidad siguiendo la estrategia Quorum y un análisis cualitativo y cuantitativo de los resultados. Resultados: Se incluyeron 4 revisiones sistemáticas de la literatura con metanálisis. Fue apreciable la disminución de las recurrencias de las infecciones respiratorias relacionadas con el uso de los lisados bacterianos. Los lisados bacterianos disminuyen la necesidad de uso de antibióticos. No se encontró evidencia sobre el uso de los lisados sobre desenlaces como la necesidad de intervenciones adicionales, tiempo de hospitalización, costo relacionado con la atención en salud. No se reportaron eventos adversos de importancia. Conclusión: Los lisados bacterianos son eficaces en disminuir la recurrencia de las infecciones respiratorias en pacientes en edad pediátrica.
Resumo:
Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.
Resumo:
The obtainment of transgenic edible plants carrying recombinant antigens is a desired issue in search for economic alternatives viewing vaccine production. Here we report a strategy for genetic transformation of lettuce plants (Lactuca sativa L.) using the surface antigen HBsAg of hepatitis B virus. Transgenic lettuce seedlings were obtained through the application of a regulated balance of plant growth regulators. Genetic transformation process was acquired by cocultivation of cotyledons with Agrobacterium tumefaciens harboring the recombinant plasmid. It is the first description of a lettuce Brazilian variety Vitória de Verão genetically modified.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Adjuvants are essential components of vaccine formulations that enhance adaptive immune responses to antigens, particularly for immunizations targeting the tolerogenic mucosal tissues, which are more biologically relevant for protective immunity against pathogens transmitted by the mucosal routes. Adjuvants possess the inherent capacity to bridge innate and adaptive immune responses through activating innate immune mediators. Here evidence is presented in support of the effectiveness of a synthetic glycolipid, alpha-Galactosylceramide (-GalCer), as an adjuvant for mucosal immunization with peptide and protein antigens, by oral and intranasal routes, to prime antigen-specific immune responses in multiple systemic and mucosal compartments. The adjuvant activity of -GalCer delivered by the intranasal route was manifested in terms of potent activation of NKT cells, an important innate immunity mediator, along with the activation of dendritic cells (DC) which serve as the professional antigen-presenting cells. Data from this investigation provide the first evidence for mucosal delivery as an effective means to harness the adjuvant potential of α-GalCer for priming as well as boosting cellular immune responses to co-administered immunogens. Unlike systemic administration where a single dose of α-GalCer leads to anergy of responding NKT cells and thus hinders delivery of booster immunizations, we demonstrated that administration of multiple doses of α-GalCer by the intranasal route affords repeated activation of NKT cells and the induction of broad systemic and mucosal immunity. This is specifically advantageous, and may be even essential, for vaccination regimens against mucosal pathogens such as the human immunodeficiency virus (HIV) and the human papillomavirus (HPV), where priming of durable protective immunity at the mucosal portals of pathogen entry would be highly desirable.
Resumo:
Classical swine fever virus replicon particles (CSF-VRP) deficient for E(rns) were evaluated as a non-transmissible marker vaccine. A cDNA clone of CSFV strain Alfort/187 was used to obtain a replication-competent mutant genome (replicon) lacking the sequence encoding the 227 amino acids of the glycoprotein E(rns) (A187delE(rns)). For packaging of A187delE(rns) into virus particles, porcine kidney cell lines constitutively expressing E(rns) of CSFV were established. The rescued VRP were infectious in cell culture but did not yield infectious progeny virus. Single intradermal vaccination of two pigs with 10(7) TCID(50) of VRP A187delE(rns) elicited neutralizing antibodies, anti-E2 antibodies, and cellular immune responses determined by an increase of IFN-gamma producing cells. No anti-E(rns) antibodies were detected in the vaccinees confirming that this vaccine represents a negative marker vaccine allowing differentiation between infected and vaccinated animals. The two pigs were protected against lethal challenge with the highly virulent CSFV strain Eystrup. In contrast, oral immunization resulted in only partial protection, and neither CSFV-specific antibodies nor stimulated T-cells were found before challenge. These data represent a good basis for more extended vaccination/challenge trials including larger numbers of animals as well as more thorough analysis of virus shedding using sentinel animals to monitor horizontal spread of the challenge virus.
Resumo:
Five candidate promoters were examined to determine their utility in directing immunogenic levels of expression of the C fragment from tetanus toxin in attenuated S. enterica used as an oral vaccine in mice. Promoters derived from the genes encoding the stringent starvation protein (sspA) from E. coli and S. enterica, but not ansB derived promoters, expressed immunogenic levels of C fragment from multi-copy plasmids in attenuated S. enterica in vivo and, following oral immunization, induced high titre specific anti-tetanus toxoid serum antibodies. We also demonstrate that not only the choice of promoter, replicon and growth conditions but also how expression constructs are assembled in the chosen plasmid is critical for the successful development of plasmid-based antigen delivery systems using attenuated S. enterica. In addition, the S. enterica sspA promoter is able to elicit anti-tetanus toxoid antibodies in mice when the psspA-tetC expression cassette is integrated in single copy on the S. enterica chromosome.