996 resultados para optimised application
Resumo:
The work reported here involved an investigation into the grinding process, one of the last finishing processes carried out on a production line. Although several input parameters are involved in this process, attention today focuses strongly on the form and amount of cutting fluid employed, since these substances may be seriously pernicious to human health and to the environment, and involve high purchasing and maintenance costs when utilized and stored incorrectly. The type and amount of cutting fluid used directly affect some of the main output variables of the grinding process which are analyzed here, such as tangential cutting force, specific grinding energy, acoustic emission, diametrical wear, roughness, residual stress and scanning electron microscopy. To analyze the influence of these variables, an optimised fluid application methodology was developed (involving rounded 5, 4 and 3 turn diameter nozzles and high fluid application pressures) to reduce the amount of fluid used in the grinding process and improve its performance in comparison with the conventional fluid application method (of diffuser nozzles and lower fluid application pressure). To this end, two types of cutting fluid (a 5% synthetic emulsion and neat oil) and two abrasive tools (an aluminium oxide and a superabrasive CBN grinding wheel) were used. The results revealed that, in every situation, the optimised application of cutting fluid significantly improved the efficiency of the process, particularly the combined use of neat oil and CBN grinding wheel. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Water-alternating-gas (WAG) is an enhanced oil recovery method combining the improved macroscopic sweep of water flooding with the improved microscopic displacement of gas injection. The optimal design of the WAG parameters is usually based on numerical reservoir simulation via trial and error, limited by the reservoir engineer’s availability. Employing optimisation techniques can guide the simulation runs and reduce the number of function evaluations. In this study, robust evolutionary algorithms are utilized to optimise hydrocarbon WAG performance in the E-segment of the Norne field. The first objective function is selected to be the net present value (NPV) and two global semi-random search strategies, a genetic algorithm (GA) and particle swarm optimisation (PSO) are tested on different case studies with different numbers of controlling variables which are sampled from the set of water and gas injection rates, bottom-hole pressures of the oil production wells, cycle ratio, cycle time, the composition of the injected hydrocarbon gas (miscible/immiscible WAG) and the total WAG period. In progressive experiments, the number of decision-making variables is increased, increasing the problem complexity while potentially improving the efficacy of the WAG process. The second objective function is selected to be the incremental recovery factor (IRF) within a fixed total WAG simulation time and it is optimised using the same optimisation algorithms. The results from the two optimisation techniques are analyzed and their performance, convergence speed and the quality of the optimal solutions found by the algorithms in multiple trials are compared for each experiment. The distinctions between the optimal WAG parameters resulting from NPV and oil recovery optimisation are also examined. This is the first known work optimising over this complete set of WAG variables. The first use of PSO to optimise a WAG project at the field scale is also illustrated. Compared to the reference cases, the best overall values of the objective functions found by GA and PSO were 13.8% and 14.2% higher, respectively, if NPV is optimised over all the above variables, and 14.2% and 16.2% higher, respectively, if IRF is optimised.
Resumo:
Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.
Resumo:
he paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. Part 1 presents a review of current status. In this part, Part 2, it is shown how the detection can be improved by utilising information from tracker. A new multitarget tracking algorithm, capable of tracking manoeuvring targets in clutter, is then presented. The algorithm is specifically tailored so that the solution to the combinatorial problem presented in a companion paper can be applied. The implementation aspects are discussed and a multiprocessor architecture identified to realise the full potential of the algorithm. Part 3 presents analytical derivations for quantitative assessment of the performance of the TWS radar system. It also shows how the performance can be optimised.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this thesis, new advances in the development of spectroscopic based methods for the characterization of heritage materials have been achieved. As concern FTIR spectroscopy new approaches aimed at exploiting near and far IR region for the characterization of inorganic or organic materials have been tested. Paint cross-section have been analysed by FTIR spectroscopy in the NIR range and an “ad hoc” chemometric approach has been developed for the elaboration of hyperspectral maps. Moreover, a new method for the characterization of calcite based on the use of grinding curves has been set up both in MIR and in FAR region. Indeed, calcite is a material widely applied in cultural heritage, and this spectroscopic approach is an efficient and rapid tool to distinguish between different calcite samples. Different enhanced vibrational techniques for the characterisation of dyed fibres have been tested. First a SEIRA (Surface Enhanced Infra-Red Absorption) protocol has been optimised allowing the analysis of colorant micro-extracts thanks to the enhancement produced by the addition of gold nanoparticles. These preliminary studies permitted to identify a new enhanced FTIR method, named ATR/RAIRS, which allowed to reach lower detection limits. Regarding Raman microscopy, the research followed two lines, which have in common the aim of avoiding the use of colloidal solutions. AgI based supports obtained after deposition on a gold-coated glass slides have been developed and tested spotting colorant solutions. A SERS spectrum can be obtained thanks to the photoreduction, which the laser may induce on the silver salt. Moreover, these supports can be used for the TLC separation of a mixture of colorants and the analyses by means of both Raman/SERS and ATR-RAIRS can be successfully reached. Finally, a photoreduction method for the “on fiber” analysis of colorant without the need of any extraction have been optimised.
Resumo:
This study assessed the attitudes of personnel involved in therapeutic claw trimming of dairy cattle in Switzerland towards pain associated with sole ulcers and their treatment. Data from 77 farmers, 32 claw trimmers, and 137 cattle veterinarians were used. A large range of factors were associated with whether the respondents thought that anaesthesia during the treatment of sole ulcers was beneficial; these included year of graduation, work experience, attitude to costs of analgesia, perception of competition between veterinarians and claw trimmers, estimation of pain level associated with treatment, estimated sensitivity of dairy cows to pain, knowledge of the obligation to provide analgesia, and whether the respondent thought lesion size and occurrence of defensive behaviour by the cow were important. Respondents' estimation of the pain level associated with sole ulcer treatment was linked to frequency of therapeutic claw trimming, age, farmers' income, estimated knowledge of the benefits of analgesia, and estimated sensitivity of dairy cows to pain. The latter factor was associated with profession, frequency of therapeutic claw trimming, capability of pain recognition, opinion on the benefits of analgesia, knowledge of the obligation to provide analgesia, and self-estimation of the ability to recognise pain. Improving the knowledge of personnel involved in therapeutic claw trimming with regard to pain in dairy cows and how to alleviate it is crucial if management of pain associated with treatment of sole ulcer and the welfare of lame cows are to be optimised.
Resumo:
Some requirements for engineering programmes, such as an ability to use the techniques, skills and modern engineering tools necessary for engineering practice, as well as an understanding of professional and ethical responsibility or an ability to communicate effectively, need new activities designed for measuring students’ progress. Negotiations take place continuously at any stage of a project and, so, the ability of engineers and managers to effectively carry out a negotiation is crucial for the success or failure of projects and businesses. Since it involves communication between individuals motivated to come together in an agreement for mutual benefit, it can be used to enhance these personal abilities. The main objective of this study was to evaluate the adequacy of mixing playing sessions and theory to maximise the students’ strategic vision in combination with negotiating skills. Results show that the combination of playing with theoretical training teaches students to strategise through analysis and discussion of alternatives. The outcome is then more optimised.
Resumo:
A practical implementation of coherent wavelength division multiplexing (CoWDM) is demonstrated for the first time using injection-locked lasers and a DPSK modulator array. For a 31.99 Gbit/s system (three subcarriers at 10.664 Gbit/s) the null-to-null spectral bandwidth was only 42.656 GHz and the average receiver sensitivity measured was -33.5 dBm when all subcarrier phases were optimised.
Resumo:
Development of reliable methods for optimised energy storage and generation is one of the most imminent challenges in modern power systems. In this paper an adaptive approach to load leveling problem using novel dynamic models based on the Volterra integral equations of the first kind with piecewise continuous kernels. These integral equations efficiently solve such inverse problem taking into account both the time dependent efficiencies and the availability of generation/storage of each energy storage technology. In this analysis a direct numerical method is employed to find the least-cost dispatch of available storages. The proposed collocation type numerical method has second order accuracy and enjoys self-regularization properties, which is associated with confidence levels of system demand. This adaptive approach is suitable for energy storage optimisation in real time. The efficiency of the proposed methodology is demonstrated on the Single Electricity Market of Republic of Ireland and Northern Ireland.
Resumo:
The main aim of this thesis is to analyse and optimise a public hospital Emergency Department. The Emergency Department (ED) is a complex system with limited resources and a high demand for these resources. Adding to the complexity is the stochastic nature of almost every element and characteristic in the ED. The interaction with other functional areas also complicates the system as these areas have a huge impact on the ED and the ED is powerless to change them. Therefore it is imperative that OR be applied to the ED to improve the performance within the constraints of the system. The main characteristics of the system to optimise included tardiness, adherence to waiting time targets, access block and length of stay. A validated and verified simulation model was built to model the real life system. This enabled detailed analysis of resources and flow without disruption to the actual ED. A wide range of different policies for the ED and a variety of resources were able to be investigated. Of particular interest was the number and type of beds in the ED and also the shift times of physicians. One point worth noting was that neither of these resources work in isolation and for optimisation of the system both resources need to be investigated in tandem. The ED was likened to a flow shop scheduling problem with the patients and beds being synonymous with the jobs and machines typically found in manufacturing problems. This enabled an analytic scheduling approach. Constructive heuristics were developed to reactively schedule the system in real time and these were able to improve the performance of the system. Metaheuristics that optimised the system were also developed and analysed. An innovative hybrid Simulated Annealing and Tabu Search algorithm was developed that out-performed both simulated annealing and tabu search algorithms by combining some of their features. The new algorithm achieves a more optimal solution and does so in a shorter time.
Resumo:
The increasing popularity of video consumption from mobile devices requires an effective video coding strategy. To overcome diverse communication networks, video services often need to maintain sustainable quality when the available bandwidth is limited. One of the strategy for a visually-optimised video adaptation is by implementing a region-of-interest (ROI) based scalability, whereby important regions can be encoded at a higher quality while maintaining sufficient quality for the rest of the frame. The result is an improved perceived quality at the same bit rate as normal encoding, which is particularly obvious at the range of lower bit rate. However, because of the difficulties of predicting region-of-interest (ROI) accurately, there is a limited research and development of ROI-based video coding for general videos. In this paper, the phase spectrum quaternion of Fourier Transform (PQFT) method is adopted to determine the ROI. To improve the results of ROI detection, the saliency map from the PQFT is augmented with maps created from high level knowledge of factors that are known to attract human attention. Hence, maps that locate faces and emphasise the centre of the screen are used in combination with the saliency map to determine the ROI. The contribution of this paper lies on the automatic ROI detection technique for coding a low bit rate videos which include the ROI prioritisation technique to give different level of encoding qualities for multiple ROIs, and the evaluation of the proposed automatic ROI detection that is shown to have a close performance to human ROI, based on the eye fixation data.
Optimised form of acceleration correction algorithm within SPH-based simulations of impact mechanics
Resumo:
In the context of SPH-based simulations of impact dynamics, an optimised and automated form of the acceleration correction algorithm (Shaw and Reid, 2009a) is developed so as to remove spurious high frequency oscillations in computed responses whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. A rational framework for an insightful characterisation of the erstwhile acceleration correction method is first set up. This is followed by the proposal of an optimised version of the method, wherein the strength of the correction term in the momentum balance and energy equations is optimised. For the first time, this leads to an automated procedure to arrive at the artificial viscosity term. In particular, this is achieved by taking a spatially varying response-dependent support size for the kernel function through which the correction term is computed. The optimum value of the support size is deduced by minimising the (spatially localised) total variation of the high oscillation in the acceleration term with respect to its (local) mean. The derivation of the method, its advantages over the heuristic method and issues related to its numerical implementation are discussed in detail. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A composite electrode made up of exfoliated graphite (EG) and diamond was prepared for the electrochemical oxidation of trichloroethylene (TCE). The SEM images of the EG-diamond material showed that diamond powders were dispersed on the surface of EG materials. The N-2 adsorption-desorption isotherm of EG-diamond material resulted in a poor adsorption capability due to the insertion of diamond powders into the porous matrix of EG. Raman spectroscopy revealed the presence of characteristic sp(3) bands of diamond confirming good interaction of diamond with EG. Electrochemical characterisation of EG-diamond in 0.1 M Na2SO4 resulted in an enhanced working potential window. The EG-diamond electrode was employed for the electrochemical oxidation of trichloroethylene (0.2 mM) in a Na2SO4 supporting electrolyte. The EG-diamond, in comparison to the pristine EG electrode, exhibited a higher removal efficiency of 94% (EG was 57%) and faster degradation kinetics of 25.3 x 10(-3) min(-1) showing pseudo first order kinetic behaviour. Under the optimised conditions, 73% total organic content (TOC) removal was achieved after 4 h of electrolysis. The degradation of TCE was also monitored with gas chromatography-mass spectrometry. Dichloroacetic acid (DCAA) was identified as a major intermediate product during the electrochemical oxidation of TCE. The electrochemical degradation of TCE at the EG-diamond electrode represents a cost effective method due to the ease of preparation of EG-diamond composite material without the necessity of diamond activation which is normally achieved through doping.