844 resultados para optimisation of sheet metal manufacturing process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the information required to describe the machine and device resources in the turret punch press environment which are needed for the development of the analysing method for automated production. The description of product and device resources and their interconnectedness is the starting point for method comparison the development of expenses, production planning and the performance of optimisation. The manufacturing method cannot be optimized unless the variables and their interdependence are known. Sheet metal parts in particular may then become remarkably complex, and their automatic manufacture may be difficult or, with some automatic equipment, even impossible if not know manufacturing properties. This thesis consists of three main elements, which constitute the triangulation. In the first phase of triangulation, the manufacture occuring on a turret punch press is examined in order to find the factors that affect the efficiency of production. In the second phase of triangulation, the manufacturability of products on turret punch presses is examined through a set of laboratory tests. The third phase oftriangulation involves an examination of five industry parts. The main key findings of this study are: all possible efficiency in high automation level machining cannot be achieved unless the raw materials used in production and the dependencies of the machine and tools are well known. Machine-specific manufacturability factors for turret punch presses were not taken into account in the industrial case samples. On the grounds of the performed tests and industrial case samples, the designer of a sheet metal product can directly influence the machining time, material loss, energy consumption and the number of tools required on a turret punch press by making decisions in the way presented in the hypothesis of thisstudy. The sheet metal parts to be produced can be optimised to bemanufactured on a turret punch press when the material to be used and the kinds of machine and tool options available are known. This provides in-depth knowledge of the machine and tool properties machine and tool-specifically. None of the optimisation starting points described here is a separate entity; instead, they are all connected to each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study will concentrate on Product Data Management (PDM) systems, and sheet metal design features and classification. In this thesis, PDM is seen as an individual system which handles all product-related data and information. The meaning of relevant data is to take the manufacturing process further with fewer errors. The features of sheet metals are giving more information and value to the designed models. The possibility of implementing PDM and sheet metal features recognition are the core of this study. Their integration should make the design process faster and manufacturing-friendly products easier to design. The triangulation method is the basis for this research. The sections of this triangle are: scientific literature review, interview using the Delphi method and the author’s experience and observations. The main key findings of this study are: (1) the area of focus in triangle (the triangle of three different point of views: business, information exchange and technical) depends on the person’s background and their role in the company, (2) the classification in the PDM system (and also in the CAD system) should be done using the materials, tools and machines that are in use in the company and (3) the design process has to be more effective because of the increase of industrial production, sheet metal blank production and the designer’s time spent on actual design and (4) because Design For Manufacture (DFM) integration can be done with CAD-programs, DFM integration with the PDM system should also be possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report illustrates a comparative study of various joining methods involved in sheet metal production. In this report it shows the selection of joining methods, which includes comparing the advantages and disadvantages of a method over the other ones and choosing the best method for joining. On the basis of various joining process from references, a table is generated containing set of criterion that helps in evaluation of various sheet metal joining processes and in selecting the most suitable process for a particular product. Three products are selected and a comprehensive study of the joining methods is analyzed with the help of various parameters. The table thus is the main part of the analysis process of this study and can be advanced with the beneficial results. It helps in a better and easy understanding and comparing the various methods, which provides the foundation of this study and analysis. The suitability of the joining method for various types of cases of different sheet metal products can be tested with the help of this table. The sections of the created table display the requirements of manufacturing. The important factor has been considered and given focus in the table, as how the usage of these parameters is important in percentages according to particular or individual case. The analysis of the methods can be extended or altered by changing the parameters according to the constraint. The use of this table is demonstrated by pertaining the cases from sheet metal production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research work, the results of an investigation dealing with welding of sheet metals with diverse air gap using FastROOT modified short arc welding method and short circuit MAG welding processes have been presented. Welding runs were made under different conditions and, during each run, the different process parameters were continuously monitored. It was found that maximum welding speed and less HAZ are reached under specific welding conditions with FastROOT method with the emphasis on arc stability. Welding results show that modified short arc exhibits a higher electrode melting coefficient and with virtually spatter free droplet transition. By adjusting the short circuit duration the penetration can be controlled with only a small change in electrode deposition. Furthermore, by mixing pulsed MIG welding with modified arc welding the working envelope of the process is greatly extended allowing thicker material sections to be welded with improved weld bead aesthetics. FastROOT is a modified short arc welding process using mechanized or automated welding process based on dip transfer welding, characterized by controlled material deposition during the short circuit of the wire electrode to the workpiece.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout the industrial processes of sheet metal manufacturing and refining, shear cutting is widely used for its speed and cost advantages over competing cutting methods. Industrial shears may include some force measurement possibilities, but the force is most likely influenced by friction losses between shear tool and the point of measurement, and are in general not showing the actual force applied to the sheet. Well defined shears and accurate measurements of force and shear tool position are important for understanding the influence of shear parameters. Accurate experimental data are also necessary for calibration of numerical shear models. Here, a dedicated laboratory set-up with well defined geometry and movement in the shear, and high measurability in terms of force and geometry is designed, built and verified. Parameters important to the shear process are studied with perturbation analysis techniques and requirements on input parameter accuracy are formulated to meet experimental output demands. Input parameters in shearing are mostly geometric parameters, but also material properties and contact conditions. Based on the accuracy requirements, a symmetric experiment with internal balancing of forces is constructed to avoid guides and corresponding friction losses. Finally, the experimental procedure is validated through shearing of a medium grade steel. With the obtained experimental set-up performance, force changes as result of changes in studied input parameters are distinguishable down to a level of 1%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation is in two parts, theory and experimental verification. (1) Theoretical Study In this study it is, for obvious reasons, necessary to analyse the concept of formability first. For the purpose of the present investigation it is sufficient to define the four aspects of formability as follows: (a) the formability of the material at a critical section, (b) the formability of the material in general, (c) process efficiency, (d) proportional increase in surface area. A method of quantitative assessment is proposed for each of the four aspects of formability. The theoretical study also includes the distinction between coaxial and non-coaxial strains which occur, respectively, in axisymmetrical and unsymmetrical forming processes and the inadequacy of the circular grid system for the assessment of formability is explained in the light of this distinction. (2) Experimental Study As one of the bases of the experimental work, the determination of the end point of a forming process, which sets the limit to the formability of the work material, is discussed. The effects of three process parameters on draw-in are shown graphically. Then the delay of fracture in sheet metal forming resulting from draw-in is analysed in kinematical terms, namely, through the radial displacements, the radial and the circumferential strains, and the projected thickness of the workpiece. Through the equilibrium equation of the membrane stresses, the effect on the shape of the unsupported region of the workpiece, and hence the position of the critical section is explained. Then, the effect of draw-in on the four aspects of formability is discussed throughout this investigation. The triangular coordinate system is used to present and analyse the triaxial strains involved. This coordinate system has the advantage of showing all the three principal strains in a material simultaneously, as well as representing clearly the many types of strains involved in sheet metal work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I “bath-tub”, i.e. “cup & cup”, fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5–5 mm). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the “fracture” work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of 1 mm, both fracture and necking contributions have the same order of magnitude in most of the metals investigated. A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing and the plate thickness, and (ii) the flow properties of the material. Each term can dominate depending on the properties of the material which explains the different behaviours reported in the literature about thin plate fracture toughness and its dependence with thickness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the bulge test, a sheet metal specimen is clamped over a circular hole in a die and formed into a bulge by the hydraulic pressure on one side of the specirnen. As the unsupported part of the specimen is deformed in this way, its area is increased, in other words, the material is generally stretched and its thickness generally decreased. The stresses causing this stretching action are the membrane stresses in the shell generated by the hydraulic pressure, in the same way as the rubber in a toy balloon is stretched by the membrane stresses caused by the air inside it. The bulge test is a widely used sheet metal test, to determine the "formability" of sheet materials. Research on this forming process (2)-(15)* has hitherto been almost exclusively confined to predicting the behaviour of the bulged specimen through the constitutive equations (stresses and strains in relation to displacements and shapes) and empirical work hardening characteristics of the material as determined in the tension test. In the present study the approach is reversed; the stresses and strains in the specimen are measured and determined from the geometry of the deformed shell. Thus, the bulge test can be used for determining the stress-strain relationship in the material under actual conditions in sheet metal forming processes. When sheet materials are formed by fluid pressure, the work-piece assumes an approximately spherical shape, The exact nature and magnitude of the deviation from the perfect sphere can be defined and measured by an index called prolateness. The distribution of prolateness throughout the workpiece at any particular stage of the forming process is of fundamental significance, because it determines the variation of the stress ratio on which the mode of deformation depends. It is found. that, before the process becomes unstable in sheet metal, the workpiece is exactly spherical only at the pole and at an annular ring. Between the pole and this annular ring the workpiece is more pointed than a sphere, and outside this ring, it is flatter than a sphere. In the forming of sheet materials, the stresses and hence the incremental strains, are closely related to the curvatures of the workpiece. This relationship between geometry and state of stress can be formulated quantitatively through prolateness. The determination of the magnitudes of prolateness, however, requires special techniques. The success of the experimental work is due to the technique of measuring the profile inclination of the meridional section very accurately. A travelling microscope, workshop protractor and surface plate are used for measurements of circumferential and meridional tangential strains. The curvatures can be calculated from geometry. If, however, the shape of the workpiece is expressed in terms of the current radial (r) and axial ( L) coordinates, it is very difficult to calculate the curvatures within an adequate degree of accuracy, owing to the double differentiation involved. In this project, a first differentiation is, in effect, by-passed by measuring the profile inclination directly and the second differentiation is performed in a round-about way, as explained in later chapters. The variations of the stresses in the workpiece thus observed have not, to the knowledge of the author, been reported experimentally. The static strength of shells to withstand fluid pressure and their buckling strength under concentrated loads, both depend on the distribution of the thickness. Thickness distribution can be controlled to a limited extent by changing the work hardening characteristics of the work material and by imposing constraints. A technique is provided in this thesis for determining accurately the stress distribution, on which the strains associated with thinning depend. Whether a problem of controlled thickness distribution is tackled by theory, or by experiments, or by both combined, the analysis in this thesis supplies the theoretical framework and some useful experimental techniques for the research applied to particular problems. The improvement of formability by allowing draw-in can also be analysed with the same theoretical and experimental techniques. Results on stress-strain relationships are usually represented by single stress-strain curves plotted either between one stress and one strain (as in the tension or compression tests) or between the effective stress and effective strain, as in tests on tubular specimens under combined tension, torsion and internal pressure. In this study, the triaxial stresses and strains are plotted simultaneously in triangular coordinates. Thus, both stress and strain are represented by vectors and the relationship between them by the relationship between two vector functions. From the results so obtained, conclusions are drawn on both the behaviour and the properties of the material in the bulge test. The stress ratios are generally equal to the strain-rate ratios (stress vectors collinear with incremental strain vectors) and the work-hardening characteristics, which apply only to the particular strain paths are deduced. Plastic instability of the material is generally considered to have been reached when the oil pressure has attained its maximum value so that further deformation occurs under a constant or lower pressure. It is found that the instability regime of deformation has already occurred long before the maximum pressure is attained. Thus, a new concept of instability is proposed, and for this criterion, instability can occur for any type of pressure growth curves.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on integrated system optimisation and parameter estimation a method is described for on-line steady state optimisation which compensates for model-plant mismatch and solves a non-linear optimisation problem by iterating on a linear - quadratic representation. The method requires real process derivatives which are estimated using a dynamic identification technique. The utility of the method is demonstrated using a simulation of the Tennessee Eastman benchmark chemical process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sustainable manufacturing process must rely on an also sustainable raw materials and energy supply. This paper is intended to show the results of the studies developed on sustainable business models for the minerals industry as a fundamental previous part of a sustainable manufacturing process. As it has happened in other economic activities, the mining and minerals industry has come under tremendous pressure to improve its social, developmental, and environmental performance. Mining, refining, and the use and disposal of minerals have in some instances led to significant local environmental and social damage. Nowadays, like in other parts of the corporate world, companies are more routinely expected to perform to ever higher standards of behavior, going well beyond achieving the best rate of return for shareholders. They are also increasingly being asked to be more transparent and subject to third-party audit or review, especially in environmental aspects. In terms of environment, there are three inter-related areas where innovation and new business models can make the biggest difference: carbon, water and biodiversity. The focus in these three areas is for two reasons. First, the industrial and energetic minerals industry has significant footprints in each of these areas. Second, these three areas are where the potential environmental impacts go beyond local stakeholders and communities, and can even have global impacts, like in the case of carbon. So prioritizing efforts in these areas will ultimately be a strategic differentiator as the industry businesses continues to grow. Over the next forty years, world?s population is predicted to rise from 6.300 million to 9.500 million people. This will mean a huge demand of natural resources. Indeed, consumption rates are such that current demand for raw materials will probably soon exceed the planet?s capacity. As awareness of the actual situation grows, the public is demanding goods and services that are even more environmentally sustainable. This means that massive efforts are required to reduce the amount of materials we use, including freshwater, minerals and oil, biodiversity, and marine resources. It?s clear that business as usual is no longer possible. Today, companies face not only the economic fallout of the financial crisis; they face the substantial challenge of transitioning to a low-carbon economy that is constrained by dwindling natural resources easily accessible. Innovative business models offer pioneering companies an early start toward the future. They can signal to consumers how to make sustainable choices and provide reward for both the consumer and the shareholder. Climate change and carbon remain major risk discontinuities that we need to better understand and deal with. In the absence of a global carbon solution, the principal objective of any individual country should be to reduce its global carbon emissions by encouraging conservation. The mineral industry internal response is to continue to focus on reducing the energy intensity of our existing operations through energy efficiency and the progressive introduction of new technology. Planning of the new projects must ensure that their energy footprint is minimal from the start. These actions will increase the long term resilience of the business to uncertain energy and carbon markets. This focus, combined with a strong demand for skills in this strategic area for the future requires an appropriate change in initial and continuing training of engineers and technicians and their awareness of the issue of eco-design. It will also need the development of measurement tools for consistent comparisons between companies and the assessments integration of the carbon footprint of mining equipments and services in a comprehensive impact study on the sustainable development of the Economy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-tier study is presented in this thesis. The first involves the commissioning of an extant but at the time, unproven bubbling fluidised bed fast pyrolysis unit. The unit was designed for an intended nominal throughput of 300 g/h of biomass. The unit came complete with solids separation, pyrolysis vapour quenching and oil collection systems. Modifications were carried out on various sections of the system including the reactor heating, quenching and liquid collection systems. The modifications allowed for fast pyrolysis experiments to be carried out at the appropriate temperatures. Bio-oil was generated using conventional biomass feedstocks including Willow, beechwood, Pine and Miscanthus. Results from this phase of the research showed however, that although the rig was capable of processing biomass to bio-oil, it was characterised by low mass balance closures and recurrent operational problems. The problems included blockages, poor reactor hydrodynamics and reduced organic liquid yields. The less than optimal performance of individual sections, particularly the feed and reactor systems of the rig, culminated in a poor overall performance of the system. The second phase of this research involved the redesign of two key components of the unit. An alternative feeding system was commissioned for the unit. The feed system included an off the shelf gravimetric system for accurate metering and efficient delivery of biomass. Similarly, a new bubbling fluidised bed reactor with an intended nominal throughput of 500g/h of biomass was designed and constructed. The design leveraged on experience from the initial commissioning phase with proven kinetic and hydrodynamic studies. These units were commissioned as part of the optimisation phase of the study. Also as part of this study, two varieties each, of previously unreported feedstocks namely Jatropha curcas and Moringa olifiera oil seed press cakes were characterised to determine their suitability as feedstocks for liquid fuel production via fast pyrolysis. Consequently, the feedstocks were used for the production of pyrolysis liquids. The quality of the pyrolysis liquids from the feedstocks were then investigated via a number of analytical techniques. The oils from the press cakes showed high levels of stability and reduced pH values. The improvements to the design of the fast pyrolysis unit led to higher mass balance closures and increased organic liquid yields. The maximum liquid yield obtained from the press cakes was from African Jatropha press cake at 66 wt% on a dry basis.