975 resultados para optimal load
Resumo:
A model comprising several servers, each equipped with its own queue and with possibly different service speeds, is considered. Each server receives a dedicated arrival stream of jobs; there is also a stream of generic jobs that arrive to a job scheduler and can be individually allocated to any of the servers. It is shown that if the arrival streams are all Poisson and all jobs have the same exponentially distributed service requirements, the probabilistic splitting of the generic stream that minimizes the average job response time is such that it balances the server idle times in a weighted least-squares sense, where the weighting coefficients are related to the service speeds of the servers. The corresponding result holds for nonexponentially distributed service times if the service speeds are all equal. This result is used to develop adaptive quasi-static algorithms for allocating jobs in the generic arrival stream when the load parameters are unknown. The algorithms utilize server idle-time measurements which are sent periodically to the central job scheduler. A model is developed for these measurements, and the result mentioned is used to cast the problem into one of finding a projection of the root of an affine function, when only noisy values of the function can be observed
Resumo:
Power systems in many countries are stressed towards their stability limit. If these stable systems experience any unexpected serious contingencies, or disturbances, there is a significant risk of instability, which may lead to wide-spread blackout. Frequency is a reliable indicator for such instability condition exists on the power system; therefore under-frequency load shedding technique is used to stable the power system by curtail some load. In this paper, the SFR-UFLS model redeveloped to generate optimal load shedding method is that optimally shed load following one single particular contingency event. The proposed optimal load shedding scheme is then tested on the 39-bus New England test system to show the performance against random load shedding scheme.
Resumo:
This paper deals with the optimal load flow problem in a fixed-head hydrothermal electric power system. Equality constraints on the volume of water available for active power generation at the hydro plants as well as inequality constraints on the reactive power generation at the voltage controlled buses are imposed. Conditions for optimal load flow are derived and a successive approximation algorithm for solving the optimal generation schedule is developed. Computer implementation of the algorithm is discussed, and the results obtained from the computer solution of test systems are presented.
Resumo:
In this paper, we present an improved load distribution strategy, for arbitrarily divisible processing loads, to minimize the processing time in a distributed linear network of communicating processors by an efficient utilization of their front-ends. Closed-form solutions are derived, with the processing load originating at the boundary and at the interior of the network, under some important conditions on the arrangement of processors and links in the network. Asymptotic analysis is carried out to explore the ultimate performance limits of such networks. Two important theorems are stated regarding the optimal load sequence and the optimal load origination point. Comparative study of this new strategy with an earlier strategy is also presented.
Resumo:
In this paper, power management algorithms for energy harvesting sensors (EHS) that operate purely based on energy harvested from the environment are proposed. To maintain energy neutrality, EHS nodes schedule their utilization of the harvested power so as to save/draw energy into/from an inefficient battery during peak/low energy harvesting periods, respectively. Under this constraint, one of the key system design goals is to transmit as much data as possible given the energy harvesting profile. For implementational simplicity, it is assumed that the EHS transmits at a constant data rate with power control, when the channel is sufficiently good. By converting the data rate maximization problem into a convex optimization problem, the optimal load scheduling (power management) algorithm that maximizes the average data rate subject to energy neutrality is derived. Also, the energy storage requirements on the battery for implementing the proposed algorithm are calculated. Further, robust schemes that account for the insufficiency of battery storage capacity, or errors in the prediction of the harvested power are proposed. The superior performance of the proposed algorithms over conventional scheduling schemes are demonstrated through computations using numerical data from solar energy harvesting databases.
Resumo:
The current power grid is on the cusp of modernization due to the emergence of distributed generation and controllable loads, as well as renewable energy. On one hand, distributed and renewable generation is volatile and difficult to dispatch. On the other hand, controllable loads provide significant potential for compensating for the uncertainties. In a future grid where there are thousands or millions of controllable loads and a large portion of the generation comes from volatile sources like wind and solar, distributed control that shifts or reduces the power consumption of electric loads in a reliable and economic way would be highly valuable.
Load control needs to be conducted with network awareness. Otherwise, voltage violations and overloading of circuit devices are likely. To model these effects, network power flows and voltages have to be considered explicitly. However, the physical laws that determine power flows and voltages are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located in distribution networks that are multiphase and radial, most of the power flow studies focus on single-phase networks.
This thesis focuses on distributed load control in multiphase radial distribution networks. In particular, we first study distributed load control without considering network constraints, and then consider network-aware distributed load control.
Distributed implementation of load control is the main challenge if network constraints can be ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy consumption is fixed, but energy usage can be shifted over time in response to network conditions. Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal deferrable load schedules within 15 iterations.
We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and only imprecise predictions about future renewable generation and load are available at the time of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control: Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current time step, and its total energy consumption equals the expectation of future deferrable load total energy request.
Network constraints, e.g., transformer loading constraints and voltage regulation constraints, bring significant challenge to the load control problem since power flows and voltages are governed by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial. Two approaches are explored to overcome this challenge: one based on convex relaxation and the other that seeks a locally optimal load schedule.
To explore the convex relaxation approach, a novel but equivalent power flow model, the branch flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex relaxation proposed in the literature, but numerically is much more stable. Empirical studies show that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world 2065-bus network, while the standard convex relaxation is numerically exact for only two of these networks.
Theoretical guarantees on the exactness of convex relaxations are provided for two types of networks: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current (DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding, or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we also modify the optimal load control problem so that its SOCP relaxation is always exact.
To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9, is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation of the power flow, which is derived with the following assumptions: 1) line losses are negligible; and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex relaxation approach, at the cost of a suboptimality within numerical precision.
Resumo:
In this paper, we present a distributed computing framework for problems characterized by a highly irregular search tree, whereby no reliable workload prediction is available. The framework is based on a peer-to-peer computing environment and dynamic load balancing. The system allows for dynamic resource aggregation, does not depend on any specific meta-computing middleware and is suitable for large-scale, multi-domain, heterogeneous environments, such as computational Grids. Dynamic load balancing policies based on global statistics are known to provide optimal load balancing performance, while randomized techniques provide high scalability. The proposed method combines both advantages and adopts distributed job-pools and a randomized polling technique. The framework has been successfully adopted in a parallel search algorithm for subgraph mining and evaluated on a molecular compounds dataset. The parallel application has shown good calability and close-to linear speedup in a distributed network of workstations.
Resumo:
We demonstrate the sensitivity of Bragg gratings in a multicore fiber to transverse load. The Bragg peaks are split because of stress-induced birefringence, the magnitude of which depends upon the load and grating position relative to the load axis. Experiments show that a set of gratings in a four-core fiber can measure a load axis angle to ±5° and a load magnitude to ±15 N m-1 up to 2500 N m-1. We consider alternative designs of multicore fiber for optimal load sensing and compare experimental and modeled data. © 2005 Optical Society of America.
Resumo:
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.
(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.
(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Resumo:
The problem of scheduling divisible loads in distributed computing systems, in presence of processor release time is considered. The objective is to find the optimal sequence of load distribution and the optimal load fractions assigned to each processor in the system such that the processing time of the entire processing load is a minimum. This is a difficult combinatorial optimization problem and hence genetic algorithms approach is presented for its solution.
Resumo:
Extending the work presented in Prasad et al. (IEEE Proceedings on Control Theory and Applications, 147, 523-37, 2000), this paper reports a hierarchical nonlinear physical model-based control strategy to account for the problems arising due to complex dynamics of drum level and governor valve, and demonstrates its effectiveness in plant-wide disturbance handling. The strategy incorporates a two-level control structure consisting of lower-level conventional PI regulators and a higher-level nonlinear physical model predictive controller (NPMPC) for mainly set-point manoeuvring. The lower-level PI loops help stabilise the unstable drum-boiler dynamics and allow faster governor valve action for power and grid-frequency regulation. The higher-level NPMPC provides an optimal load demand (or set-point) transition by effective handling of plant-wide interactions and system disturbances. The strategy has been tested in a simulation of a 200-MW oil-fired power plant at Ballylumford in Northern Ireland. A novel approach is devized to test the disturbance rejection capability in severe operating conditions. Low frequency disturbances were created by making random changes in radiation heat flow on the boiler-side, while condenser vacuum was fluctuating in a random fashion on the turbine side. In order to simulate high-frequency disturbances, pulse-type load disturbances were made to strike at instants which are not an integral multiple of the NPMPC sampling period. Impressive results have been obtained during both types of system disturbances and extremely high rates of load changes, right across the operating range, These results compared favourably with those from a conventional state-space generalized predictive control (GPC) method designed under similar conditions.
Resumo:
Clustering combined with multihop communication is a promising solution to cope with the energy requirements of large scale Wireless Sensor Networks. In this work, a new cluster based routing protocol referred to as Energy Aware Cluster-based Multihop (EACM) Routing Protocol is introduced, with multihop communication between cluster heads for transmitting messages to the base station and direct communication within clusters. We propose EACM with both static and dynamic clustering. The network is partitioned into near optimal load balanced clusters by using a voting technique, which ensures that the suitability of a node to become a cluster head is determined by all its neighbors. Results show that the new protocol performs better than LEACH on network lifetime and energy dissipation
Resumo:
This study presents a description of the development model of a representation of simplified grid applied in hybrid load flow for calculation of the voltage variations in a steady-state caused by the wind farm on power system. Also, it proposes an optimal load-flow able to control power factor on connection bar and to minimize the loss. The analysis process on system, led by the wind producer, it has as base given technician supplied by the grid. So, the propose model to the simplification of the grid that allows the necessity of some knowledge only about the data referring the internal network, that is, the part of the network that interests in the analysis. In this way, it is intended to supply forms for the auxiliary in the systematization of the relations between the sector agents. The model for simplified network proposed identifies the internal network, external network and the buses of boulders from a study of vulnerability of the network, attributing them floating liquid powers attributing slack models. It was opted to apply the presented model in Newton-Raphson and a hybrid load flow, composed by The Gauss-Seidel method Zbarra and Summation Power. Finally, presents the results obtained to a developed computational environment of SCILAB and FORTRAN, with their respective analysis and conclusion, comparing them with the ANAREDE
Resumo:
This work develops a methodology for defining the maximum active power being injected into predefined nodes in the studied distribution networks, considering the possibility of multiple accesses of generating units. The definition of these maximum values is obtained from an optimization study, in which further losses should not exceed those of the base case, i.e., without the presence of distributed generation. The restrictions on the loading of the branches and voltages of the system are respected. To face the problem it is proposed an algorithm, which is based on the numerical method called particle swarm optimization, applied to the study of AC conventional load flow and optimal load flow for maximizing the penetration of distributed generation. Alternatively, the Newton-Raphson method was incorporated to resolution of the load flow. The computer program is performed with the SCILAB software. The proposed algorithm is tested with the data from the IEEE network with 14 nodes and from another network, this one from the Rio Grande do Norte State, at a high voltage (69 kV), with 25 nodes. The algorithm defines allowed values of nominal active power of distributed generation, in percentage terms relative to the demand of the network, from reference values
Resumo:
PURPOSE Mechanical loading is an important parameter that alters the homeostasis of the intervertebral disc (IVD). Studies have demonstrated the role of compression in altering the cellular metabolism, anabolic and catabolic events of the disc, but little is known how complex loading such as torsion-compression affects the IVD cell metabolism and matrix homeostasis. Studying how the duration of torsion affects disc matrix turnover could provide guidelines to prevent overuse injury to the disc and suggest possible beneficial effect of torsion. The aim of the study was to evaluate the biological response of the IVD to different durations of torsional loading. METHODS Intact bovine caudal IVD were isolated for organ culture in a bioreactor. Different daily durations of torsion were applied over 7 days at a physiological magnitude (±2°) in combination with 0.2 MPa compression, at a frequency of 1 Hz. RESULTS Nucleus pulpous (NP) cell viability and total disc volume decreased with 8 h of torsion-compression per day. Gene expression analysis suggested a down-regulated MMP13 with increased time of torsion. 1 and 4 h per day torsion-compression tended to increase the glycosaminoglycans/hydroxyproline ratio in the NP tissue group. CONCLUSIONS Our result suggests that load duration thresholds exist in both torsion and compression with an optimal load duration capable of promoting matrix synthesis and overloading can be harmful to disc cells. Future research is required to evaluate the specific mechanisms for these observed effects.