994 resultados para optical waveguide components


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication and characterization of micromachined reduced-height air-filled rectangular waveguide components suitable for integration is reported in this paper. The lithographic technique used permits structures with heights of up to 100 μm to be successfully constructed in a repeatable manner. Waveguide S-parameter measurements at frequencies between 75-110 GHz using a vector network analyzer demonstrate low loss propagation in the TE10 mode reaching 0.2 dB per wavelength. Scanning electron microscope photographs of conventional and micromachined waveguides show that the fabrication technique can provide a superior surface finish than possible with commercially available components. In order to circumvent problems in efficiently coupling free-space propagating beams to the reduced-height G-band waveguides, as well as to characterize them using quasi-optical techniques, a novel integrated micromachined slotted horn antenna has been designed and fabricated, E-, H-, and D-plane far-field antenna pattern measurements at different frequencies using a quasi-optical setup show that the fabricated structures are optimized for 180-GHz operation with an E-plane half-power beamwidth of 32° elevated 35° above the substrate, a symmetrical H-plane pattern with a half-power beamwidth of 23° and a maximum D-plane cross-polar level of -33 dB. Far-field pattern simulations using HFSS show good agreement with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the use of organic-inorganic sol-gel derived poly(oxyehylene)/ siloxane hybrid doped with methacrylic acid modified zirconium (IV) n-propoxide for the fabrication of low cost waveguides trough direct UV laser writing. The organic-inorganic hybrids were processed as monoliths with size and shape control. The effective guiding region was identified and the number of modes was estimated via mode field analyses. A grating was successfully superimposed on the channel and the respective reflection spectrum was measured, enabling the determination of the guiding region dimension, the calculation of the effective refractive index of the guided mode. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapid and sensitive detection of chemical and biological analytes becomes increasingly important in areas such as medical diagnostics, food control and environmental monitoring. Optical biosensors based on surface plasmon resonance (SPR) and optical waveguide spectroscopy have been extensively pushed forward in these fields. In this study, we combine SPR, surface plasmon-enhanced fluorescence spectroscopy (SPFS) and optical waveguide spectroscopy with hydrogel thin film for highly sensitive detection of molecular analytes.rnrnA novel biosensor based on SPFS which was advanced through the excitation of long range surface plasmons (LRSPs) is reported in this study. LRSPs are special surface plasmon waves propagating along thin metal films with orders of magnitude higher electromagnetic field intensity and lower damping than conventional SPs. Therefore, their excitation on the sensor surface provides further increased fluorescence signal. An inhibition immunoassay based on LRSP-enhanced fluorescence spectroscopy (LRSP-FS) was developed for the detection of aflatoxin M1 (AFM1) in milk. The biosensor allowed for the detection of AFM1 in milk at concentrations as low as 0.6 pg mL-1, which is about two orders of magnitude lower than the maximum AFM1 residue level in milk stipulated by the European Commission legislation.rnrnIn addition, LRSPs probe the medium adjacent to the metallic surface with more extended evanescent field than regular SPs. Therefore, three-dimensional binding matrices with up to micrometer thickness have been proposed for the immobilization of biomolecular recognition elements with large surface density that allows to exploit the whole evanescent field of LRSP. A photocrosslinkable carboxymethyl dextran (PCDM) hydrogel thin film is used as a binding matrix, and it is applied for the detection of free prostate specific antigen (f-PSA) based on the LRSP-FS and sandwich immunoassay. We show that this approach allows for the detection of f-PSA at low femto-molar range, which is approximately four orders of magnitude lower than that for direct detection of f-PSA based on the monitoring of binding-induced refractive index changes.rnrnHowever, a three dimensional hydrogel binding matrix with micrometer thickness can also serve as an optical waveguide. Based on the measurement of binding-induced refractive index changes, a hydrogel optical waveguide spectroscopy (HOWS) is reported for a label-free biosensor. This biosensor is implemented by using a SPR optical setup in which a carboxylated poly(N-isoproprylacrylamide) (PNIPAAm) hydrogel film is attached on a metallic surface and modified by protein catcher molecules. Compared to regular SPR biosensor with thiol self-assembled monolayer (SAM), HOWS provides an order of magnitude improved resolution in the refractive index measurements and enlarged binding capacity owing to its low damping and large swelling ratio, respectively. A model immunoassay experiment revealed that HOWS allowed detection of IgG molecules with a 10 pM limit of detection (LOD) that was five-fold lower than that achieved for SPR with thiol SAM. For the high capacity hydrogel matrix, the affinity binding was mass transport limited.rnrnThe mass transport of target molecules to the sensor surface can play as critical a role as the chemical reaction itself. In order to overcome the diffusion-limited mass transfer, magnetic iron oxide nanoparticles were employed. The magnetic nanoparticles (MNPs) can serve both as labels providing enhancement of the refractive index changes, and “vehicles” for rapidly delivering the analytes from sample solution to an SPR sensor surface with a gradient magnetic field. A model sandwich assay for the detection of β human chorionic gonadotropin (βhCG) has been utilized on a gold sensor surface with metallic diffraction grating structure supporting the excitation of SPs. Various detection formats including a) direct detection, b) sandwich assay, c) MNPs immunoassay without and d) with applied magnetic field were compared. The results show that the highly-sensitive MNPs immunoassay improves the LOD on the detection of βhCG by a factor of 5 orders of magnitude with respect to the direct detection.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon micromachined waveguide components operating in the WM-250 (WR-1) waveguide band (0.75 to 1.1 THz) are measured. Through lines are used to characterize the waveguide loss with and without an oxide etch to reduce the surface roughness. A sidewall roughness of 100nm is achieved, enabling a waveguide loss of 0.2dB/mm. A 1THz band-pass filter is also measured to characterize the precision of fabrication process. A 1.8% shift in frequency is observed and can be accounted for by the 0.5deg etch angle and 2um expansion of the features by the oxide etch. The measured filter has a 13% 3dB bandwidth and 2.5dB insertion loss through the passband.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid waveguide Bragg grating in optical fiber was fabricated and characterized, showing thermal responsivity of 211pm/°C. Proposed being used in fiber sensor, it demonstrates enhanced resolution by 20x and 2x for temperature and strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid waveguide Bragg grating in optical fiber was fabricated and characterized, showing thermal responsivity of 211pm/°C. Proposed being used in fiber sensor, it demonstrates enhanced resolution by 20x and 2x for temperature and strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical mechanics of two coupled vector fields is studied in the tight-binding model that describes propagation of polarized light in discrete waveguides in the presence of the four-wave mixing. The energy and power conservation laws enable the formulation of the equilibrium properties of the polarization state in terms of the Gibbs measure with positive temperature. The transition line T=∞ is established beyond which the discrete vector solitons are created. Also in the limit of the large nonlinearity an analytical expression for the distribution of Stokes parameters is obtained, which is found to be dependent only on the statistical properties of the initial polarization state and not on the strength of nonlinearity. The evolution of the system to the final equilibrium state is shown to pass through the intermediate stage when the energy exchange between the waveguides is still negligible. The distribution of the Stokes parameters in this regime has a complex multimodal structure strongly dependent on the nonlinear coupling coefficients and the initial conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This line of research of my group intends to establish a Silicon technological platform in the field of photonics allowing the development of a wide set of applications. Particularly, what is still lacking in Silicon Photonics is an efficient and integrable light source such an LED or laser. Nanocrystals in silicon oxide or nitride matrices have been recently demonstrated as competitive materials for both active components (electrically and optically driven light emitters and optical amplifiers) and passive ones (waveguides and modulators). The final goal is the achievement of a complete integration of electronic and optical functions in the same CMOS chip. The first part of this paper will introduce the structural and optical properties of LEDs fabricated from silicon nanostructures. The second will treat the interaction of such nanocrystals with rare-earth elements (Er), which lead to an efficient hybrid system emitting in the third window of optical fibers. I will present the fabrication and assessment of optical waveguide amplifiers at 1.54 ¿m for which we have been able to demonstrate recently optical gain in waveguides made from sputtered silicon suboxide materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current copper based circuit technology is becoming a limiting factor in high speed data transfer applications as processors are improving at a faster rate than are developments to increase on board data transfer. One solution is to utilize optical waveguide technology to overcome these bandwidth and loss restrictions. The use of this technology virtually eliminates the heat and cross-talk loss seen in copper circuitry, while also operating at a higher bandwidth. Transitioning current fabrication techniques from small scale laboratory environments to large scale manufacturing presents significant challenges. Optical-to-electrical connections and out-of-plane coupling are significant hurdles in the advancement of optical interconnects. The main goals of this research are the development of direct write material deposition and patterning tools for the fabrication of waveguide systems on large substrates, and the development of out-of-plane coupler components compatible with standard fiber optic cabling. Combining these elements with standard printed circuit boards allows for the fabrication of fully functional optical-electrical-printed-wiring-boards (OEPWBs). A direct dispense tool was designed, assembled, and characterized for the repeatable dispensing of blanket waveguide layers over a range of thicknesses (25-225 µm), eliminating waste material and affording the ability to utilize large substrates. This tool was used to directly dispense multimode waveguide cores which required no UV definition or development. These cores had circular cross sections and were comparable in optical performance to lithographically fabricated square waveguides. Laser direct writing is a non-contact process that allows for the dynamic UV patterning of waveguide material on large substrates, eliminating the need for high resolution masks. A laser direct write tool was designed, assembled, and characterized for direct write patterning waveguides that were comparable in quality to those produced using standard lithographic practices (0.047 dB/cm loss for laser written waveguides compared to 0.043 dB/cm for lithographic waveguides). Straight waveguides, and waveguide turns were patterned at multimode and single mode sizes, and the process was characterized and documented. Support structures such as angled reflectors and vertical posts were produced, showing the versatility of the laser direct write tool. Commercially available components were implanted into the optical layer for out-of-plane routing of the optical signals. These devices featured spherical lenses on the input and output sides of a total internal reflection (TIR) mirror, as well as alignment pins compatible with standard MT design. Fully functional OEPWBs were fabricated featuring input and output out-of-plane optical signal routing with total optical losses not exceeding 10 dB. These prototypes survived thermal cycling (-40°C to 85°C) and humidity exposure (95±4% humidity), showing minimal degradation in optical performance. Operational failure occurred after environmental aging life testing at 110°C for 216 hours.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new technique is reported for micro-machining millimetre-wave rectangular waveguide components. S-parameter measurements on these structures show that they achieve lower loss than those produced using any other on-chip fabrication technique, have highly accurate dimensions, are physically robust, and are cheap and easy to manufacture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel technique for micro-machining millimeter and submillimeter-wave rectangular waveguide components is reported. These are fabricated in two halves which simply snap together, utilizing locating pins and holes, and are physically robust, and cheap, and easy to manufacture. In addition, S-parameter measurements on these structures are reported for the first time and display lower loss than previously reported micro-machined rectangular waveguides.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydrogels are used in a variety of applications in daily life, such as super absorbers, contact lenses and in drug delivery. Functional hydrogels that allow the incorporation of additional functionalities have enormous potential for future development. The properties of such hydrogels can be diversified by introducing responsiveness to external stimuli. These crosslinked polymers are known to respond to changes in temperature, pH and pressure, as well as chemical and electrical stimuli, magnetic fields and irradiation. From this responsive behavior possible applications arise in many fields like drug delivery, tissue engineering, purification and implementation as actuators, biosensors or for medical coatings. However, their interaction with biomaterial and way of functioning are yet not fully understood. Therefore, thorough investigations regarding their optical, mechanical and chemical nature have to be conducted. A UV-crosslinkable polymer, consisting of N-isopropylacrylamide, methacrylic acid and the UV-crosslinker 4-benzoylphenyl methacrylate was synthesized. Its composition, determined by a comprehensive NMR study, is equivalent to the composition of the monomer mixture. The chemical characteristics were preserved during the subsequently formation of hydrogel films by photo-crosslinking as proved by XPS. For the optical characterization, e.g. the degree of swelling of very thin films, the spectroscopy of coupled long range surface plasmons is introduced. Thicker films, able to guide light waves were analyzed with combined surface plasmon and optical waveguide mode spectroscopy (SPR/OWS). The evaluation of the data was facilitated by the reverse Wentzel-Kramers-Brillouin (WKB) approximation. The meshsize and proper motion of the surface anchored hydrogels were investigated by fluorescence correlation spectroscopy (FCS), micro photon correlation spectroscopy (µPCS) and SPR/OWS. The studied gels exhibit a meshsize that allowed for the diffusion of small biomolecules inside their network. For future enhancement of probing diffusants, a dye that enables FRET in FCS was immobilized in the gel and the diffusion of gold-nanoparticles embedded in the polymer solution was studied by PCS. These properties can be conveniently tuned by the crosslinking density, which depends on the irradiation dose. Additionally, protocols and components for polymer analogous reactions based on active ester chemistry of the hydrogel were developed. Based on these syntheses and investigations, the hydrogel films are applied in the fields of medical coatings as well as in biosensing as matrix and biomimetic cushion. Their non-adhesive properties were proved in cell experiments, SPR/OWS and ToF-SIMS studies. The functionality and non-fouling property of the prepared hydrogels allowed for adaption to the needs of the respective application.