936 resultados para optical ring resonator
Resumo:
A novel second-order polarization-independent filter made of a single ring resonator and a Sagnac interferometer (SRRSI) is proposed, and its filtering characteristics are investigated. By using birefringence in waveguide, a single ring resonator can be used to synthesize a filter with second-order response. Analytical formulas are derived for characteristics of the SRRSI varied with waveguide parameters.. such as the coupling coefficient; and the critical condition of a second-order Butterworth filter is given. The influence of loss in the ring resonator is also analyzed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenability as high as 0.68nm/mu N. and it is capable of tuning up to 1.7nm.
Resumo:
We describe the linear and nonlinear transfer characteristics of a multi-resonance optical device consisting of two ring resonators coupled one to another and to a waveguide. The propagation effects displayed by the device are compared with those of a sequence of a waveguide-coupled fundamental ring resonators.
Resumo:
We describe the linear and nonlinear optical transfer characteristics of a multi-resonance device consisting of two optical ring resonators coupled one to the other and to an optical waveguide. The propagation effects displayed by the device are compared with those of a sequence of fundamental ring resonators coupled to a waveguide.
On-chip switching of a silicon nitride micro-ring resonator based on digital microfluidics platform.
Resumo:
We demonstrate the switching of a silicon nitride micro ring resonator (MRR) by using digital microfluidics (DMF). Our platform allows driving micro-droplets on-chip, providing control over the effective refractive index at the vicinity of the resonator and thus facilitating the manipulation of the transmission spectrum of the MRR. The device is fabricated using a process that is compatible with high-throughput silicon fabrication techniques with buried highly doped silicon electrodes. This platform can be extended towards controlling arrays of micro optical devices using minute amounts of liquid droplets. Such an integration of DMF and optical resonators on chip can be used in variety of applications, ranging from biosensing and kinetics to tunable filtering on chip.
Resumo:
Frequency response of a fiber ring resonator (FRR) composed of an ordinary optical coupler and a segment of optical fiber is theoretically and experimentally investigated. The frequency response equation based oil small-signal modulation is derived and studied in detail. It is shown that the shape of the frequency response curve is very sensitive to the wavelength; as a result, the FRR can be applied to measure the wavelength of a lightwave source with high resolution. With this method, we demonstrate the measurement of tiny changes of wavelength of a DFB laser. (C) 2009 Wiley Periodicals. Inc. Microwave Opt Technol Lett 51 2444-2448, 2009 Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.24608
Resumo:
We report the experimental results of an unstable ring resonator with 90-deg beam rotation for a kilowatt class chemical oxygen iodine laser (COIL). The distributions of near-field phase and far-field intensity were measured. A beam quality of 1.6 was achieved when the COIL average output power was approximately 5 kW. (C) 1999 Optical Society of America.
Resumo:
A new method of dielectric-constant measurement is developed. The dielectric constant epsilon(r) RF/microwave substrate is extracted by combining the microstrip ring resonator measurement with Ansoft HFSS electromagnetic simulation software. The developed method has two advantages: (i) characterization of dielectric constant versus multiple frequency points, and (ii) compatibility with electronics design automation (EDA) software tools. This characterization method can reduce the design cycle of microwave circuits and devices. (C) 2004 Wiley Periodicals, Inc.
Resumo:
In this paper, microstrip lines magnetically coupled to splitring resonators (SRRs) are conquved to electromagnetic bundgup (EBG) nr,rrostrip lines in terns q/ their stop-heard penjbrnmrnce and dimensions. In bath types o/ trunsmis•siou lines, signal propagation is inhibited in it certain jequency bwuL For EBG microstrip lines, the central frequency of such a forbidden band is determined by the period of the structure, whereas in SRR-hased microstrip lines the position of the frequency gap depends on the quasi-static resonant frequency of the rings. The main relevant conrributiun of this paper is to provide a tuning procedure to control the gap width in SRR microstrip lines, and to show that by using SRRs, device dimensions ale much smaller than those required by EBGs in order to obtain similar stop-banal performance. This has been demonstrated by fill-wave electromagnetic simulations and experimentally verified from the characterization ql two fabricated microstrip lines: one with rectangular SRRs etched on the upper substrate side, and the other with a periodic perturbation cf'strip width. For similar rejection and 1-(;H,. gap width centered at 4.5 Gllz, it has been found that the SRR microstrip line is•,fve times shorter. In addition, no ripple is appreciable in the allowed band for the .SRR-hared structure, whereas due to dispersion, certain mismatch is expected in the EBG prototype. Due to the high-frequency selectivity, controllable gap width, and small dimensions, it is believed that SRR coupled to planar transmission lines can have an actual impact on the design of stop-band filters compatible with planar technology, and can be an alternative to present solutions based on distributed approaches or EBG
Resumo:
A planar waveguide ring resonator was fabricated by organic-inorganic hybrid sol-gel materials; its sensitivity to ethanol vapor was experimentally investigated. It was found that dips in the transmission spectrum of the device shifted to longer wavelengths with increasing the ethanol concentration, and its sensitivity showed a linear relation with the ethanol concentration, showing a coefficient of 1.13 pm/ppm. In addition, the transmission loss of the ring resonator decreased with increasing the ethanol concentration. The measured characteristics suggest that the device may be considered as one of the candidates of alcohol vapor sensors. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the tunability of a silicon nitride micro-resonator using the concept of Digital Microfluidics. Our system allows driving micro-droplets on-chip, enabling the control of the effective refractive index at the vicinity of the resonator. © 2010 OSA/FiO/LS 2010.
Resumo:
We propose and simulate a new kind of compact polarizing beam splitter (PBS) based on a photonic crystal ring resonator (PCRR) with complete photonic bandgaps. The two polarized states are separated far enough by resonant and nonresonant coupling between the waveguide modes and the microring modes. Some defect holes are utilized to control the beam propagation. The simulated results obtained by the finite-difference time-domain method show that high transmission (over 95%) is obtained and the polarization separation is realized with a length as short as 3.1 mu m. The design of the proposed PBS can be flexible, thanks to the advantages of PCRRs.
Resumo:
Polarization-independent laterally-coupled micro-ring resonator has been designed and demonstrated. The origin of the polarization-sensitivity of the photonic wire waveguide (PWW) was analyzed. A polarization-insensitive PWW structure was designed and a polarization-insensitive MRR based on this PWW structure was designed by finite difference time-domain method and was fabricated on an 8-inch silicon-on-insulator wafer. The offset between the resonant wavelengths of the quasi-TE mode and the quasi-TM mode is smaller than 0.15 nm. The FSR is about 17 nm, extinction ratio about 10 dB and Q about 620.