994 resultados para onshore gas platform


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'étude vise à évaluer l'exposition professionnelle au bruit des travailleurs d'une plateforme gazière en Algérie et à mettre en évidence des déterminants influençant cette exposition. Des groupes d'exposition homogène (GEH) ont été constitués sur la base de ressemblances quant à l'exposition au bruit, aux titres d'emploi et aux lieux de travail. Deux stratégies d'échantillonnage ont été suivies, la première selon la norme internationale ISO 9612 : 2009 et la seconde selon la stratégie aléatoire de l'AIHA. Pour les deux approches, les niveaux de bruit (Lex, 8h, niveaux d'exposition au bruit pondéré (A) ajustés à une journée de travail de 8 heures) des opérateurs et des superviseurs étaient généralement > 85 dB(A) alors que pour les techniciens-tableau, les niveaux de bruit (Lex, 8h) étaient en tout temps < 85 dB(A). Pour les trois GEH du titre d'emploi des maintenanciers, il y a eu régulièrement des dépassements de la valeur de référence. Plusieurs travailleurs oeuvrant sur les plateformes gazières sont exposés à des niveaux importants de bruit et sont à risque de développer des problèmes auditifs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In recent weeks, Rosneft, a Russian state-owned oil company, has signed co-operation agreements with three Western corporations: America’s ExxonMobil, Italy’s Eni, and Norway’s Statoil. In exchange for access to Russian oil fields on the continental shelf as minority shareholders, these Western investors will finance and carry out exploration there. They will also offer to Rosnieft technology transfer, staff exchange and the purchase of shares in their assets outside Russia (for example in the North Sea or in South America). Rosneft’s deals with Western energy companies prove that the Russian government is resuming the policy of a controlled opening-up of the Russian energy sectors to foreign investors which it initiated in 2006. So far, investors have been given access to the Russian electric energy sector and some onshore gas fields. The agreements which have been signed so far also allow them to work on the Russian continental shelf. This process is being closely supervised by the Russian government, which has enabled the Kremlin to maintain full control of this sector. The primary goal of this policy is to attract modern technologies and capital to Russia and to gain access to foreign assets since this will help Russian corporations to reinforce their positions in international markets. The signing of the above agreements does not guarantee that production will commence. These are a high-risk projects. It remains uncertain whether crude can be extracted from those fields and whether its development will be cost-effective. According to estimates, the Russian Arctic shelf holds approximately 113 billion tonnes of hydrocarbons. The development of these fields, including building any necessary infrastructure, may consume over US$500 billion within 30 years. Furthermore, the legal regulations currently in force in Russia do not guarantee that foreign investors will have a share in the output from these fields. Without foreign support, Russian companies are unlikely to cope with such technologically complicated and extremely expensive investments. In the most optimistic scenario, the oil production in the Russian Arctic may commence in fifteen to twenty years at the earliest.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A CMOS gas sensor array platform with digital read-out containing 27 sensor pixels and a reference pixel is presented. A signal conditioning circuit at each pixel includes digitally programmable gain stages for sensor signal amplification followed by a second order continuous time delta sigma modulator for digitization. Each sensor pixel can be functionalized with a distinct sensing material that facilitates transduction based on impedance change. Impedance spectrum (up to 10 KHz) of the sensor is obtained off-chip by computing the fast Fourier transform of sensor and reference pixel outputs. The reference pixel also compensates for the phase shift introduced by the signal processing circuits. The chip also contains a temperature sensor with digital readout for ambient temperature measurement. A sensor pixel is functionalized with polycarbazole conducting polymer for sensing volatile organic gases and measurement results are presented. The chip is fabricated in a 0.35 CMOS technology and requires a single step post processing for functionalization. It consumes 57 mW from a 3.3 V supply.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper describes the architecture of the Martian Gas Analytic Package, which is proposed for the Russian ExoMars Lander 2018.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon (C) and nitrogen (N) process-based models are important tools for estimating and reporting greenhouse gas emissions and changes in soil C stocks. There is a need for continuous evaluation, development and adaptation of these models to improve scientific understanding, national inventories and assessment of mitigation options across the world. To date, much of the information needed to describe different processes like transpiration, photosynthesis, plant growth and maintenance, above and below ground carbon dynamics, decomposition and nitrogen mineralization. In ecosystem models remains inaccessible to the wider community, being stored within model computer source code, or held internally by modelling teams. Here we describe the Global Research Alliance Modelling Platform (GRAMP), a web-based modelling platform to link researchers with appropriate datasets, models and training material. It will provide access to model source code and an interactive platform for researchers to form a consensus on existing methods, and to synthesize new ideas, which will help to advance progress in this area. The platform will eventually support a variety of models, but to trial the platform and test the architecture and functionality, it was piloted with variants of the DNDC model. The intention is to form a worldwide collaborative network (a virtual laboratory) via an interactive website with access to models and best practice guidelines; appropriate datasets for testing, calibrating and evaluating models; on-line tutorials and links to modelling and data provider research groups, and their associated publications. A graphical user interface has been designed to view the model development tree and access all of the above functions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis looks at the UK onshore oil and gas production industry and follows the history of a population of firms over a fifteen-year period following the industry's renaissance. It examines the linkage between firm survival, selection pressures and adaptation responses at the firm level, especially the role of discretionary adaptation, specifically exploration and exploitation strategies.Taking a Realist approach and using quantitative and qualitative methods for triangulation on a new data base derived from archival data, as well as informant interviews, it tests seven hypotheses' about post-entry survival of firms. The quantitative findings suggest that firm survival within this industry is linked to discretionary adaptation, when measured at the firm level, and to a mixture of selection and adaptation forces when measured for each firm for each individual year. The qualitative research suggests that selection factors dominate. This difference in views is unresolved. However the small, sparse population and the nature of the oil and gas industry compared with other common research contexts such as manufacturing or service firms suggests the results be treated with caution as befits a preliminary investigation. The major findings include limited support for the theory that the external environment is the major determinant of firm survival, though environment components affect firms differentially; resolution of apparent literature differences relating to the sequencing of exploration and exploitation and potential tangible evidence of coevolution. The research also finds that, though selection may be considered important by industry players, discretionary adaptation appears to play the key role, and that the key survival drivers for thispopulation are intra-industry ties, exploitation experience and a learning/experience component. Selection has a place, however, in determining the life-cycle of the firm returning to be a key survival driver at certain ages of the firm inside the industry boundary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a generic and integrated solar powered remote Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the UASs as well as a data management platform to store, analyse and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, opening the way to a ubiquitous low cost environmental monitoring. A video of the bench and flight test performed can be seen in the following link https://www.youtube.com/watch?v=Bwas7stYIxQ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction The admission to the Intensive Care Unit with a diagnosis of sepsis and/or septic shock is not uncommon. The aim of this article is to present a nursing case review of a patient admitted to the intensive care unit with a diagnosis of septic shock and the use of bedside acid–base formulae to inform clinical decision making. Method We chose to use a case review. This method is useful in reporting unusual or rare cases and is typically seen more in medicine than in nursing. Discussion The gentleman in question was a self-presentation with a short history of fever and worsening shortness of breath. His condition worsened where he required admission to the intensive care unit. The use of ‘advanced’ acid–base interpretation to guide his nursing care provided a platform from which to advance a deeper understanding of the intricacies the critically ill patient often presents. Conclusion The use of case review is enlightening in understanding the disease process and the decision-making that accompanies this. The lessons learnt are applicable to a wider nursing audience because understanding acid–base physiology is beneficial in supporting and advancing critical care nursing practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple, rapid, plasma-assisted synthesis of large-area arrays of vertically-aligned carbon nanowalls on highly-porous, transparent bare and gold-coated alumina membranes with the two pore sizes is reported. It is demonstrated that the complex patterns of vertically aligned nanowalls can nucleate and form different morphologies in the low-temperature plasmas. The process is stable, and the twofold change in the gas flow (10 and 20 sccm) does not noticeably influence the morphology of the nanowall pattern. Application of a thin (5 nm) gold layer to nanoporous membrane prior to the nanowall growth allows controlling the network morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a low power gas sensor system on CMOS platform consisting of micromachined polysilicon microheater, temperature controller circuit, resistance readout circuit and SnO2 transducer film. The design criteria for different building blocks of the system is elaborated The microheaters are optimized for temperature uniformity as well as static and dynamic response. The electrical equivalent model for the microheater is derived by extracting thermal and mechanical poles through extensive laser doppler vibrometer measurements. The temperature controller and readout circuit are realized on 130nm CMOS technology The temperature controller re-uses the heater as a temperature sensor and controls the duty cycle of the waveform driving the gate of the power MOSFET which supplies heater current. The readout circuit, with subthreshold operation of the MOSFETs, is based oil resistance to time period conversion followed by frequency to digital converter Subthreshold operatin of MOSFETs coupled with sub-ranging technique, achieves ultra low power consumption with more than five orders of magnitude dynamic range RF sputtered SnO2 film is optimized for its microstructure to achive high sensitivity to sense LPG gas.