976 resultados para one-electron oxidation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviors of double proton transfer (DPT) occurring in a representative glycinamide-formamidine complex have been investigated employing the B3LYP/6-311++G** level of theory. Computational results suggest that the participation of a formamidine molecule favors the proceeding of the proton transfer (PT) for glycinamide compared with that without mediator-assisted case. The DPT process proceeds with a concerted mechanism rather than a stepwise one since no zwitterionic complexes have been located during the DPT process. The barrier heights are 14.4 and 3.9 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 3.1 and 2.9 kcal/mol to 11.3 and 1.0 kcal/mol with further inclusion of zero-point vibrational energy (ZPVE) corrections, where the lower reverse barrier height implies that the reverse reaction should proceed easily at any temperature of biological importance. Additionally, the one-electron oxidation process for the double H-bonded glycinamide-formamidine complex has also been investigated. The oxidated product is characterized by a distonic radical cation due to the fact that one-electron oxidation takes place on glycinamide fragment and a proton has been transferred from glycinamide to formamidine fragment spontaneously. As a result, the vertical and adiabatic ionization potentials for the neutral double H-bonded complex have been determined to be about 8.46 and 7.73 eV, respectively, where both of them have been reduced by about 0.79 and 0.87 eV relative to those of isolated glycinamide due to the formation of the intermolecular H-bond with formamidine. Finally, the differences between model system and adenine-thymine base pair have been discussed briefly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free radicals from one-electron oxidation of the antimalarial drug pyronaridine have been studied by pulse radiolysis. The results show that pyronaridine is readily oxidised to an intermediate semi-iminoquine radical by inorganic and organic free radicals, including those derived from tryptophan and acetaminophen. The pyronaridine radical is rapidly reduced by both ascorbate and caffeic acid. The results indicate that the one-electron reduction potential of the pyronaridine radical at neutral pH lies between those of acetaminophen (707 mV) and caffeic acid (534 mV). The pyronaridine radical decays to produce the iminoquinone, detected by electrospray mass spectrometry, in a second-order process that density functional theory (DFT) calculations (UB3LYP/6-31+G*) suggest is a disproportionation reaction. Important calculated dimensions of pyronaridine, its phenoxyl and aminyl radical, as well as the iminoquinone, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungi that cause brown rot of wood are essential biomass recyclers and also the principal agents of decay in wooden structures, but the extracellular mechanisms by which they degrade lignocellulose remain unknown. To test the hypothesis that brown-rot fungi use extracellular free radical oxidants as biodegradative tools, Gloeophyllum trabeum was examined for its ability to depolymerize an environmentally recalcitrant polyether, poly(ethylene oxide) (PEO), that cannot penetrate cell membranes. Analyses of degraded PEOs by gel permeation chromatography showed that the fungus cleaved PEO rapidly by an endo route. 13C NMR analyses of unlabeled and perdeuterated PEOs recovered from G. trabeum cultures showed that a major route for depolymerization was oxidative C—C bond cleavage, a reaction diagnostic for hydrogen abstraction from a PEO methylene group by a radical oxidant. Fenton reagent (Fe(II)/H2O2) oxidized PEO by the same route in vitro and therefore might account for PEO biodegradation if it is produced by the fungus, but the data do not rule out involvement of less reactive radicals. The reactivity and extrahyphal location of this PEO-degrading system suggest that its natural function is to participate in the brown rot of wood and that it may enable brown-rot fungi to degrade recalcitrant organopollutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

8-Oxoguanine (8-oxoG), induced by reactive oxygen species and arguably one of the most important mutagenic DNA lesions, is prone to further oxidation. Its one-electron oxidation products include potentially mutagenic guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) because of their mispairing with A or G. All three oxidized base-specific DNA glycosylases of Escherichia coli, namely endonuclease III (Nth), 8-oxoG-DNA glycosylase (MutM) and endonuclease VIII (Nei), excise Gh and Sp, when paired with C or G in DNA, although Nth is less active than the other two. MutM prefers Sp and Gh paired with C (kcat/Km of 0.24–0.26 min–1 nM–1), while Nei prefers G over C as the complementary base (kcat/Km – 0.15–0.17 min–1 nM–1). However, only Nei efficiently excises these paired with A. MutY, a 8-oxoG·A(G)-specific A(G)-DNA glycosylase, is inactive with Gh(Sp)·A/G-containing duplex oligonucleotide, in spite of specific affinity. It inhibits excision of lesions by MutM from the Gh·G or Sp·G pair, but not from Gh·C and Sp·C pairs. In contrast, MutY does not significantly inhibit Nei for any Gh(Sp) base pair. These results suggest a protective function for MutY in preventing mutation as a result of A (G) incorporation opposite Gh(Sp) during DNA replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-electron oxidation of a methionine residue is thought to be a key step in the neurotoxicity of the beta amyloid peptide of Alzheimer's disease. The chemistry of the radical cation of N-formylmethioninamide (11+) and two model systems, dimethyl sulfide (1+) and ethyl methyl sulfide (6+), in the presence of oxygen have been studied by B3LYP/6-31G(d) and CBS-RAD calculations. The stable form of 11+ has a three-electron bond between the sulfur radical cation and the carbonyl oxygen atom of the i - 1 residue. The radical cation may lose a proton from the methyl or methylene groups flanking the oxidized sulfur. Both 11+ and the resultant C-centered radicals may add oxygen to form peroxy radicals. The calculations indicate that unlike C-centered radicals the sulfur radical cation does not form a covalent bond to oxygen but rather forms a loose ion-induced dipole complex with an S-O separation of about 2.7 Å, and is bound by about 13 kJ mol-1 (on the basis of 1+ + O2). Direct intramolecular abstraction of an H atom from the C site is unlikely. It is endothermic by more than 20 kJ mol-1 and involves a high barrier (G = 79 kJ mol-1). The -to-S C-centered radicals will add oxygen to form peroxy radicals. The OH BDEs of the parent hydroperoxides are in the range of 352-355 kJ mol-1, similar to SH BDEs (360 kJ mol-1) and C-H BDEs (345-350 kJ mol-1). Thus, the peroxy radicals are oxidizing species comparable in strength to thiyl radicals and peptide backbone C-centered radicals. Each peroxy radical can abstract a hydrogen atom from the backbone C site of the Met residue to yield the corresponding C-centered radical/hydroperoxide in a weakly exothermic process with modest barriers in the range of 64-92 kJ mol-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the quadratic nonlinearity of one- and two-electron oxidation products of the first series of transition metal complexes of meso-tetraphenylporphyrin (TPP). Among many MTPP complexes, only CuTPP and ZnTPP show reversible oxidation/reduction cycles as seen from cyclic voltammetry experiments. While centrosymmetric neutral metalloporphyrins have zero first hyperpolarizability, β, as expected, the cation radicals and dications of CuTPP and ZnTPP have very high β values. The one- and two-electron oxidation of the MTPPs leads to symmetry-breaking of the metal−porphyrin core, resulting in a large β value that is perhaps aided in part by contributions from the two-photon resonance enhancement. The calculated static first hyperpolarizabilities, β0, which are evaluated in the framework of density functional theory by a coupled perturbed Hartree−Fock method, support the experimental trend. The switching of optical nonlinearity has been achieved between the neutral and the one-electron oxidation products but not between the one- and the two-electron oxidation products since dications that are electrochemically reversible are unstable due to the formation of stable isoporphyrins in the presence of nucleophiles such as halides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potenital pathways for the deactivation of hindered amine light stabilisers (HALS) have been investigated by observing reactions of model compounds-based on 4-substituted derivatives of 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)-with hydroxyl radicals. In these reactions, dilute aqueous suspensions of photocatalytic nanoparticulate titanium dioxide were irradiated with UV light in the presence of water-soluble TEMPO derivatives. Electron spin resonance (ESR) and electrospray ionisation mass-spectrometry (ESI-MS) data were acquired to provide complementary structural elucidation of the odd-and even-electron products of these reactions and both techniques show evidence for the formation of 4-oxo-TEMPO (TEMPONE). TEMPONE formation from the 4-substituted TEMPO compounds is proposed to be initiated by hydrogen abstraction at the 4-position by hydroxyl radical. High-level ab initio calculations reveal a thermodynamic preference for abstraction of this hydrogen but computed activation barriers indicate that, although viable, it is less favoured than hydrogen abstraction from elsewhere on the TEMPO scaffold. If a radical is formed at the 4-position however, calculations elucidate two reaction pathways leading to TEMPONE following combination with either a second hydroxyl radical or dioxygen. An alternate mechanism for conversion of TEMPOL to TEMPONE via an alkoxyl radical intermediate is also considered and found to be competitive with the other pathways. ESI-MS analysis also shows an increased abundance of analogous 4-substituted piperidines during the course of irradiation, suggesting competitive modification at the 1-position to produce a secondary amine. This modification is confirmed by characteristic fragmentation patterns of the ionised piperidines obtained by tandem mass spectrometry. The conclusions describe how reaction at the 4-position could be responsible for the gradual depletion of HALS in pigmented surface coatings and secondly, that modification at nitrogen to form the corresponding secondary amine species may play a greater role in the stabilisation mechanisms of HALS than previously considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following Weisskopf, the kinematics of quantum mechanics is shown to lead to a modified charge distribution for a test electron embedded in the Fermi-Dirac vacuum with interesting consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part I

Several approximate Hartree-Fock SCF wavefunctions for the ground electronic state of the water molecule have been obtained using an increasing number of multicenter s, p, and d Slater-type atomic orbitals as basis sets. The predicted charge distribution has been extensively tested at each stage by calculating the electric dipole moment, molecular quadrupole moment, diamagnetic shielding, Hellmann-Feynman forces, and electric field gradients at both the hydrogen and the oxygen nuclei. It was found that a carefully optimized minimal basis set suffices to describe the electronic charge distribution adequately except in the vicinity of the oxygen nucleus. Our calculations indicate, for example, that the correct prediction of the field gradient at this nucleus requires a more flexible linear combination of p-orbitals centered on this nucleus than that in the minimal basis set. Theoretical values for the molecular octopole moment components are also reported.

Part II

The perturbation-variational theory of R. M. Pitzer for nuclear spin-spin coupling constants is applied to the HD molecule. The zero-order molecular orbital is described in terms of a single 1s Slater-type basis function centered on each nucleus. The first-order molecular orbital is expressed in terms of these two functions plus one singular basis function each of the types e-r/r and e-r ln r centered on one of the nuclei. The new kinds of molecular integrals were evaluated to high accuracy using numerical and analytical means. The value of the HD spin-spin coupling constant calculated with this near-minimal set of basis functions is JHD = +96.6 cps. This represents an improvement over the previous calculated value of +120 cps obtained without using the logarithmic basis function but is still considerably off in magnitude compared with the experimental measurement of JHD = +43 0 ± 0.5 cps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ratios R-k1 of k-fold to single ionization of the target atom with simultaneous one-electron capture by the projectile have been measured for 15-480 keV/u (nu(p) = 0.8-4.4 a.u.) collisions of Cq+, Oq+ (q=1-4) with Ar, using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. The present ratios are similar to those for He+ and He2+ ion impact. The energy dependence of R-k1 shows a maximum at a certain energy, E-max. which approximately conforms to the q(1/2)-dependence scaling. For a fixed projectile state, the ratios R-k1 also vary strongly with outgoing reaction channels. The general behavior of the measured data can be qualitatively analyzed by a simple impact-parameter, independent-electron model. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The L-shell ionization processes of a Ne gas target associated with single-electron capture by bombardment of Cq+ and Oq+ (q=2,3) are investigated using the projectile-recoil-ion coincidence method in the energy range from 80 to 400 keV/u (v(p)=1.8-4 a.u.). The cross-section ratios (R-k1) of k-fold ionization to single capture are compared with the results for He2+-Ne collisions by Dubois [Phys. Rev. A 36, 2585 (1987)]. All the velocity dependences are quite similar. The ratios increase as the projectile energy increases in the lower-energy region, reach the maxima for projectile energies around E-max=160q(1/2) keV/u, and then decrease at higher energies. These results qualitatively agree with our calculations in terms of the Bohr-Lindhard model within the independent-electron approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation of electrode oxidation processes of (tetra-phenylporphinato) manganese (III) Perchlorate, (TPS)Mn(III)ClO4, was carried out during the titration of chloride anions by conventional cyclic voltammetry, thin-layer cyclic voltammetry and spectroelectrochemistry. It was demonstrated that in the presence of one equivalent amount of Cl-, the first one electron oxidation reaction corresponds to the Mn(III)I cation radical oxidation, and the second one electron oxidation corresponds to the cation radical/dication generation followed by an iso-porphyrin formation reaction, however in the presence of two equivalent amount of Cl-, the first one electron oxidation of Mn(III) gives Mn(IV) porphyrin and the second one electron oxidation generates cation radicals of Mn(IV) followed by an iso-porphyrin formation reactions. Mechanisms of these redox processes are postulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translational energy spectroscopy (TES) has been used to study state-selective one-electron capture by H and He-like ions of C, N and O in both H and H-2 within the range 250-900 eV amu(- 1). The main collision mechanisms leading to state-selective electron capture have been identified, their relative importance assessed and compared, where possible, with theoretical predictions and with any previous measurements based on photon emission spectroscopy. For one-electron capture in H-2, the relative importance of contributions from non- dissociative and dissociative capture as well as from two- electron capture into autoionizing states is found to be strikingly different for the cases considered. Our TES measurements in atomic hydrogen provide an important extension of previous measurements to energies below 1000 eV amu(-1) and show that, as the impact energy decreases, electron capture becomes more selective until only a single n product channel is significant. These product main channels are well described by reaction windows calculated using a Landau-Zener approach. However, the same approach applied to the more complex energy- change spectra observed in H-2 is found to be less successful.