12 resultados para oligosaccharyltransferase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PglB oligosaccharyltransferase (OTase) of Campylobacter jejuni can be functionally expressed in Escherichia coli, and its relaxed oligosaccharide substrate specificity allows the transfer of different glycans from the lipid carrier undecaprenyl pyrophosphate to an acceptor protein. To investigate the substrate specificity of PglB, we tested the transfer of a set of lipid-linked polysaccharides in E. coli and Salmonella enterica serovar Typhimurium. A hexose linked to the C-6 of the monosaccharide at the reducing end did not inhibit the transfer of the O antigen to the acceptor protein. However, PglB required an acetamido group at the C-2. A model for the mechanism of PglB involving this functional group was proposed. Previous experiments have shown that eukaryotic OTases have the same requirement, suggesting that eukaryotic and prokaryotic OTases catalyze the transfer of oligosaccharides by a conserved mechanism. Moreover, we demonstrated the functional transfer of the C. jejuni glycosylation system into S. enterica. The elucidation of the mechanism of action and the substrate specificity of PglB represents the foundation for engineering glycoproteins that will have an impact on biotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DAD1, the defender against apoptotic cell death, was initially identified as a negative regulator of programmed cell death in the BHK21-derived tsBN7 cell line. Of interest, the 12.5-kDa DAD1 protein is 40% identical in sequence to Ost2p, the 16-kDa subunit of the yeast oligosaccharyltransferase (OST). Although the latter observation suggests that DAD1 may be a mammalian OST subunit, biochemical evidence to support this hypothesis has not been reported. Previously, we showed that canine OST activity is associated with an oligomeric complex of ribophorin I, ribophorin II, and OST48. Here, we demonstrate that DAD1 is a tightly associated subunit of the OST both in the intact membrane and in the purified enzyme. Sedimentation velocity analyses of detergent-solubilized WI38 cells and canine rough microsomes show that DAD1 cosediments precisely with OST activity and with the ribophorins and OST48. Radioiodination of the purified OST reveals that DAD1 is present in roughly equimolar amounts relative to the other subunits. DAD1 can be crosslinked to OST48 in intact microsomes with dithiobis(succinimidylpropionate). Crosslinked ribophorin II–OST48 heterodimers, DAD1–ribophorin II–OST48 heterotrimers and DAD1–ribophorin I–ribophorin II–OST48 heterotetramers also were detected. The demonstration that DAD1 is a subunit of the OST suggests that induction of a cell death pathway upon loss of DAD1 in the tsBN7 cell line reflects the essential nature of N-linked glycosylation in eukaryotes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE Diseases including cancer and congenital disorders of glycosylation have been associated with changes in the site-specific extent of protein glycosylation. Saliva can be non-invasively sampled and is rich in glycoproteins, giving it the potential to be a useful biofluid for the discovery and detection of disease biomarkers associated with changes in glycosylation. METHODS Saliva was collected from healthy individuals and glycoproteins were enriched using phenylboronic acid based glycoprotein enrichment resin. Proteins were deglycosylated with peptide-N-glycosidase F and digested with AspN or trypsin. Desalted peptides and deglycosylated peptides were separated by reversed-phase liquid chromatography and detected with on-line electrospray ionization quadrupole-time-of-flight mass spectrometry using a 5600 TripleTof instrument. Site-specific glycosylation occupancy was semi-quantitatively determined from the abundance of deglycosylated and nonglycosylated versions of each given peptide. RESULTS Glycoprotein enrichment identified 67 independent glycosylation sites from 24 unique proteins, a 3.9-fold increase in the number of glycosylation sites identified. Enrichment of glycoproteins rather than glycopeptides allowed detection of both deglycosylated and nonglycosylated versions of each peptide, and thereby robust measurement of site-specific occupancy at 21 asparagines. Healthy individuals showed limited biological variability in occupancy, with partially modified sites having characteristics consistent with inefficient glycosylation by oligosaccharyltransferase. Inclusion of negative controls without enzymatic deglycosylation controlled for spontaneous chemical deamidation, and identified asparagines previously incorrectly annotated as glycosylated. CONCLUSIONS We developed a sample preparation and mass spectrometry detection strategy for rapid and efficient measurement of site-specific glycosylation occupancy on diverse salivary glycoproteins suitable for biomarker discovery and detection of changes in glycosylation occupancy in human disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SIMP (source of immunodominant MHC-associated peptides) plays a key rote in N-linked glycosylation with the active site of oligosaccharyltransferase, being the source of MHC-peptides in the MHC I presentation pathway. In the present study, the SIMP gene has been cloned from grass carp Ctenopharyngodon idella by rapid amplification of cDNA ends (RACE). The full length of the cDNA sequence is 4384 bp, including a 1117 bp 5' UTR (untranslated region), a 2418 bp open reading frame, and a 849 bp 3' UTR. The deduced amino acids of the grass carp SIMP (gcSIMP) are a highly conserved protein with a STT3 domain and 11 transmembrane regions. The gcSIMP spans over more than 24,212 bp in length, containing 16 exons and 15 introns. Most encoding exons, except the first and the 15th, have the same length as those in human and mouse. The gcSIMP promoter contains many putative transcription factor binding sites, such as Oct-1, GCN4, YY1, Sp1, Palpha, TBP, GATA-1, C/EBP beta, and five C/EBP alpha binding sites. The mRNA expression of gcSIMP in different organs was examined by real-time PCR. The gcSIMP was distributed in all the organs examined, with the highest level in brain, followed by the level in the heart, liver, gill, trunk kidney, muscle, head kidney, thymus, and the lowest level in spleen. Furthermore, the recombinant gcSIMP has been constructed successfully and expressed in Escherichia coli by using pQE-40 vector, and the polyclonal antibody for rabbit has been successfully obtained, which was verified to be specific. Identification of gcSIMP will help to explore the function in fish innate immunity. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacter jejuni has a general N-linked protein glycosylation system that can be functionally transferred to Escherichia coli. In this study, we engineered E. coli cells in a way that two different pathways, protein N-glycosylation and lipopolysaccharide (LPS) biosynthesis, converge at the step in which PglB, the key enzyme of the C. jejuni N-glycosylation system, transfers O polysaccharide from a lipid carrier (undecaprenyl pyrophosphate) to an acceptor protein. PglB was the only protein of the bacterial N-glycosylation machinery both necessary and sufficient for the transfer. The relaxed specificity of the PglB oligosaccharyltransferase toward the glycan structure was exploited to create novel N-glycan structures containing two distinct E. coli or Pseudomonas aeruginosa O antigens. PglB-mediated transfer of polysaccharides might be valuable for in vivo production of O polysaccharides-protein conjugates for use as antibacterial vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ArnT is a glycosyltransferase that catalyses the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipid A moiety of the lipopolysaccharide. This is a critical modification enabling bacteria to resist killing by antimicrobial peptides. ArnT is an integral inner membrane protein consisting of 13 predicted transmembrane helices and a large periplasmic C-terminal domain. We report here the identification of a functional motif with a canonical consensus sequence DEXRYAX(5)MX(3)GXWX(9)YFEKPX(4)W spanning the first periplasmic loop, which is highly conserved in all ArnT proteins examined. Site-directed mutagenesis demonstrated the contribution of this motif in ArnT function, suggesting that these proteins have a common mechanism. We also demonstrate that the Burkholderia cenocepacia and Salmonella enterica serovar Typhimurium ArnT C-terminal domain is required for polymyxin B resistance in vivo. Deletion of the C-terminal domain in B. cenocepacia ArnT resulted in a protein with significantly reduced in vitro binding to a lipid A fluorescent substrate and unable to catalyse lipid A modification with L-Ara4N. An in silico predicted structural model of ArnT strongly resembled the tertiary structure of Campylobacter lari PglB, a bacterial oligosaccharyltransferase involved in protein N-glycosylation. Therefore, distantly related oligosaccharyltransferases from ArnT and PglB families operating on lipid and polypeptide substrates, respectively, share unexpected structural similarity that could not be predicted from direct amino acid sequence comparisons. We propose that lipid A and protein glycosylation enzymes share a conserved catalytic mechanism despite their evolutionary divergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced glycation endproducts (AGEs) are derivatives of nonenzymatic reactions between sugars and protein or lipids, and together with AGE-specific receptors are involved in numerous pathogenic processes associated with aging and hyperglycemia. Two of the known AGE-binding proteins isolated from rat liver membranes, p60 and p90, have been partially sequenced. We now report that the N-terminal sequence of p60 exhibits 95% identity to OST-48, a 48-kDa member of the oligosaccharyltransferase complex found in microsomal membranes, while sequence analysis of p90 revealed 73% and 85% identity to the N-terminal and internal sequences, respectively, of human 80K-H, a 80- to 87-kDa protein substrate for protein kinase C. AGE-ligand and Western analyses of purified oligosaccharyltransferase complex, enriched rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membranes from rat liver or RAW 264.7 macrophages yielded a single protein of approximately 50 kDa recognized by both anti-p60 and anti-OST-48 antibodies, and also exhibited AGE-specific binding. Immunoprecipitated OST-48 from rat rough endoplasmic reticulum fractions exhibited both AGE binding and immunoreactivity to an anti-p60 antibody. Immune IgG raised to recombinant OST-48 and 80K-H inhibited binding of AGE-bovine serum albumin to cell membranes in a dose-dependent manner. Immunostaining and flow cytometry demonstrated the surface expression of OST-48 and 80K-H on numerous cell types and tissues, including mononuclear, endothelial, renal, and brain neuronal and glial cells. We conclude that the AGE receptor components p60 and p90 are identical to OST-48, and 80K-H, respectively, and that they together contribute to the processing of AGEs from extra- and intracellular compartments and in the cellular responses associated with these pathogenic substances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coatomer, a cytosolic heterooligomeric protein complex that consists of seven subunits [alpha-, beta-, beta'-, gamma-, delta-, epsilon-, and zeta-COP (nonclathrin coat protein)], has been shown to interact with dilysine motifs typically found in the cytoplasmic domains of various endoplasmic-reticulum-resident membrane proteins [Cosson, P. & Letourneur, F. (1994) Science 263, 1629-1631]. We have used a photo-cross-linking approach to identify the site of coatomer that is involved in binding to the dilysine motifs. An octapeptide corresponding to the C-terminal tail of Wbp1p, a component of the yeast N-oligosaccharyltransferase complex, has been synthesized with a photoreactive phenylalanine at position -5 and was radioactively labeled with [125I]iodine at a tyrosine residue introduced at the N terminus of the peptide. Photolysis of isolated coatomer in the presence of this peptide and immunoprecipitation of coatomer from photo-cross-linked cell lysates reveal that gamma-COP is the predominantly labeled protein. From these results, we conclude that coatomer is able to bind to the cytoplasmic dilysine motifs of membrane proteins of the early secretory pathway via its gamma-COP subunit, whose complete cDNA-derived amino acid sequence is also presented.