9 resultados para oligoaniline
Resumo:
A novel water-soluble electroactive polymer, aniline pentamer crosslinked chitosan (Pentamer-c-Chi), was prepared by condensation polymerization of the terminal carboxyl groups in aniline pentamer with the amino side groups in chitosan in aqueous solution. The carboxyl groups were activated by N-hydroxysuccinimide (NHS) and N,N'-dicyclohexylcarbodiimide (I)CC). The electrochemical behavior of aniline pentamer in this kind of crosslinked polymer was studied in acidic aqueous solution by means of cyclic voltammetry (CV), UV-vis, and electron spin resonance (ESR) spectroscopy.
Resumo:
A series of oligoaniline-functionalized mono- and bis-topic terpyridine ligands, i.e. C6H5[N(R)C6H4](n)TPY (R = H, butyl, tert-butyloxycarbonyl; n = 1-4; TPY = 2,2':6',2"-terpyridyl) and TPYC6H4[N(R)C6H4](m)TPY (R = H, tert-butyloxycarbonyl; m = 2, 4), and the corresponding monoand bis-nuclear ruthenium(II) complexes have been synthesized and verified. The spectroscopic results indicate that two kinds of pi-pi* transitions from TPY and oligoaniline fragments of ligands strongly shift to lower energy, and the metal-to-ligand charge-transfer transition ((MLCT)-M-1) bands of all obtained complexes are considerably red-shifted (Delta lambda(max) = 22-64 nm) and their intensities become much more intense (approximately 4-6 times), compared with those of the reported complex [Ru(TPY)(2)](2+). Moreover, the spectroscopic properties of the ligands and complexes with longer oligoaniline units (n = 3, 4) are markedly influenced by the external stimulus, such as the oxidation and proton acid doping.
Resumo:
Novel pi-conjugated coil-rod-coil triblock oligomers containing optoelectronic active oligoaniline segments were synthesized. The block oligomer can self-assemble into diverse aggregating morphologies including spherical micelles and thin-layer vesicles in THF, which is found associated with the removing of the protecting groups of oligoaniline segments. A possible mechanism was proposed to explain the self-assembly behavior changes in which chain conformation variation of the aniline segments initiated from deprotection of the nitrogen atoms is pointed to be the key factor that dominates the transition process.
Resumo:
A novel electroactive silsesquioxane precursor, N-(4-aminophenyl)-M-(4'-(3-triethoxysilyl-propyl-ureido) phenyl-1,4-quinonenediimine) (ATQD), was successfully synthesized from the emeraldine form of amino-capped aniline trimers via a one-step coupling reaction and subsequent purification by column chromatography. The physicochemical properties of ATQD were characterized using mass spectrometry as well as by nuclear magnetic resonance and UV-vis spectroscopy. Analysis by cyclic voltammetry confirmed that the intrinsic electroactivity of ATQD was maintained upon protonic acid doping, exhibiting two distinct reversible oxidative states, similar to polyaniline. The aromatic amine terminals of self-assembled monolayers (SAMs) of ATQD on glass substrates were covalently modified with an adhesive oligopeptide, cyclic Arg-Gly-Asp (RGD) (ATQD-RGD). The mean height of the monolayer coating on the surfaces was similar to 3 nm, as measured by atomic force microscopy. The biocompatibility of the novel electroactive substrates was evaluated using PC12 pheochromocytoma cells, an established cell line of neural origin. The bioactive, derivatized electroactive scaffold material, ATQD-RGD, supported PC12 cell adhesion and proliferation, similar to control tissue-culture-treated polystyrene surfaces.
Resumo:
highly organized phenyl-capped teraniline (PC-teraniline) film at the molecular level was fabricated on carbon surfaces by electrochemical reduction of diazonium salts. Cyclic voltammetry (CV). scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) were employed for the characterization of the film.
Resumo:
Phenyl-capped oligoanilines in the oxidized state and their salts (by camphor sulfonic acid, CSA) were comparatively studied by UV-Vis and NMR spectroscopy. The UV-Vis spectra revealed a similar electron transfer behaviour and similar structure in the tetraaniline to those in polyaniline. Upon formation of the salt, H-1 NMR CH peaks of the oligomers showed large shifts to lower fields. The longer the molecule of a oligomer is, the more the shift, indicating that the charge brought into the N atoms by the proton was redistributed over the whole molecule. The CH and quaternary carbon peak-shifts support the electron cloud motion route H -->C -->C -->N -->H. This is in agreement with the four ring BQ derivatives model.
Resumo:
Aniline pentamer and hexamer in the leucoemeraldine oxidation state were synthesized through a novel method. The method was accomplished by the reaction of parent aniline tetramer in the pernigraniline oxidation state with diphenylamine and N-phenyl-1,4-phenylenediamine in the leucoemeraldine oxidation state respectively. The oligomers in the leucoemeraldine oxidation state were characterized by IR, NMR, elemental analysis and MALDI-MS. Aniline pentamer and hexamer in the emeraldine oxidation state were synthesized by the oxidation of Ag2O in DMF. It was found that some fragmentation occurred when the pentamer and hexamer were oxidized by (NH4)(2)S2O8 and FeCl3. 6H(2)O. The pentamer and hexamer in the emeraldine oxidation state was studied by UV/Vis spectra. The relative intensity of exciton peak for pentaaniline showed a little increase compared with that of hexaaniline.
Resumo:
This paper investigates the structure of the pro; ducts obtained from the polymerization of aniline with ammonium persulfate in a citrate/phosphate buffer solution at pH 3 by resonance Raman, NMR, FTIR, and UV-vis-NIR spectroscopies. All the spectroscopic data showed that the major product presented segments that were formed by a 1,4-Michael reaction between aniline and p-benzoquinone monoimine, ruling out the formation of polyazane structure that has been recently proposed. The characterization of samples obtained at different stages of the reaction indicated that, as the reaction progressed, phenazine units were formed and 1,4-Michael-type adducts were hydrolyzed/oxidized to yield benzoquinone. Raman mapping data suggested that phenazine-like segments could be related to the formation of the microspheres morphology.
Resumo:
The pH-structure correlation of the products of aniline peroxydisulfate reaction was mainly investigated by resonance Raman spectroscopy. The reactions of aniline and ammonium peroxydisulfate were carried out in aqueous solutions of initial pH ranging from 4.9 to 13.2 and monomer/oxidant molar ratio of 4/1. For an initial pH of 4.9, the spectroscopic techniques showed that the emeraldine salt form of polyaniline (PANI-ES) is the main product, corroborating that the usual head-to-tail coupling mechanism is taking place. The resonance Raman spectra at 1064 nm exciting wavelength were useful to detect the emeraldine salt as a minor product for reactions at an initial pH of 5.3-11.5. The Raman spectra of the main product of the reaction at initial pH of 13.2 excited at 1064 and 413.1 nm showed new spectral features consistent with 1,4-Michael-type adducts of aniline monomers and 1,4-benzoquinone-monoimine unit. These compounds and their products of hydrolysis/oxidation are the predominant species for the reaction media of initial pH from 5.3 to 13.2. In order to get PANI with different nanoscale morphologies, a pH value of more than 0 or 1 was used in the aniline polymerization. The spectroscopic data obtained in this work reveal that head-to-tail coupling does not occur when aniline reacts at media pH higher than about 5. It is suggested that chemical structures of the products of aniline oxidation by an unusual mechanism are the driving force for the development of assorted morphologies. Copyright (C) 2011 John Wiley & Sons, Ltd.